
Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin

Attribute-Based Encryption for Circuits [GVW13]
April 12, 2013 Scribe: Kina Winoto

The scheme from [GVW13] works as follows:

(pp,msk)← Setup($) for `-bit input x’es, depth d circuits: (Note that for this scheme we need a
bound on depth of circuit, because at input the error expands as we get to output. Thus to get a
bound on the error, we need a bound on the depth.)

We need to generate two matrices for each input wire and a matrix for the output wire. For the
input wires we use the lattice-trapdoor-sampling procedure TGen (that returns a nearly matrix
A ∈ Zn×mq together with a trapdoor t for A), for the putput wire we just choose the matrix at
random:

• For i = 1, 2, . . . , ` and b ∈ {0, 1}, set (Ai,b, ti,b)← TGen (n, q,m, error distrib).

• For the output wire, choose a random matrix, Aout,1 ∈R Zn×mq .

The public parameters are pp = {Ai,b, Aout,1}i∈[`],b=0,1, and the master secret key is msk =

{ti,b}i∈[`],b=0,1.

CTx ←Encrypt(~M ∈ {0, 1}m; pp, x ∈ {0, 1}`):

• Choose at random ~s ∈ Znq .

• Choose ~e1, . . . , ~e`, ~eout ←− error distribution

• Set ~vi = ~sAi,xi + ~ei for i = 1, . . . , ` and ~c = ~sAout,1 + ~eout +
⌊ q

2

⌋
~M

• CTx =
(
x, {vi}`i=1, ~c

)
.

Note that we are only trying to hide ~M , not x.

skP ←KeyGenerator(P,msk): Let C be a circuit computing the predicate P , with input wires
1, . . . , `, intermediate wires `+ 1, . . . , N − 1 and output wire N .

Note that in the delegation scheme in the last lecture we could generate parameters specifically
for a given circuit. However, in this construction we don’t know anything about the circuit when
we generate the parameters, so we have somehow “stitch” the new matrices that we generate for C
to the matrices Ai,b and Aout,1 from the public key, using the trapdoors that we have in the master-
secret key. We will again use TGen to choose all the matrices that we need, and will use the
trapdoors to generates the R’s.

• for i = `+ 1, . . . , N − 1, b ∈ {0, 1}, set (Ai,b, ti,b)←− TGen(n, q,m, error distrib.)

• AN,0 ∈R Zn×mq

• For every gate G with input wires u, v and output wire w, use the trapdoors for Au,∗, Av,∗
to sample the R matrices such that Au,bRbc + Av,cR

′
bc = Aw,G(bc) and R’s small. We do this

using the same method as the delegation scheme in last lecture:

– Choose R[G]′bc ← DZm×n,σ

1

– Set ∆ = Aw,G(bc) −AvcR[G]′bc, denote the columns of ∆ by ∆ =
(
~δ1| . . . |~δm

)
.

– The ith row of R is drawn from the discrete Gaussian distribution ~ri ← DL⊥
~δi

(Au,b),σ
.

Thus ~ri is Gaussian such that Au,b~ri = ~δi.

– Set R[G]bc = (~r1| . . . |~rm).

• The secret key is skP = {(R[G]bc, R[G]′bc) | G is a gate; b, c are bits} .

M/ ⊥← Decrypt(CTx, skP): Evaluate the circtuit CP (x) and remember the bits on all the wires.
If CP (x) = 0 then output ⊥.

If CP (x) = 1 then go over the circuit CP in a bottom-up fashion. For every gate with input
wires u, v and output wire w, input bits b, c and output bit d, and input vectors ~ub, ~vc, compute:

~wd = ~ubRbc + ~vcR
′
bc

Denote the output vector by ~wout and let ~δout = ~c − ~wout (where ~c is the “output vector” in the
ciphertext CTx). Then output the vector ~M where for all i = 1, . . . ,m

Mi =

{
0 if |~δi| < q

4

1 if |~δi| ≥ q
4

Correctness

If p(x) = 1, then ~wout = ~sAout,1 + ~e for some small ~e0. Also ~c is of the same form, except with⌊ q
2

⌋
~M added. Hence ~δ = ~sAout,1 + ~e+ bq/2c · ~M for a small ~e, and correctness follows.

Security

Recall the interaction between scheme and attacker in our security model:

Scheme Attacker
x∗←−−−−−−−−−−−−−−−−−−−−−−−

pp,msk ← Setup($)
pp−−−−−−−−−−−−−−−−−−−−−−−→ pi(x

∗) = 0

skpi ← KeyGen(pi;msk)

{ pi←−−−−−−−−−−−−−−−−−−−−−−−
skpi−−−−−−−−−−−−−−−−−−−−−−−→

}q
i=1

∀i pi(x∗) = 0

j ∈R {1, 2}
m1,m2←−−−−−−−−−−−−−−−−−−−−−−−

ctx∗ ← Encrypt(mi; pp, x
∗)

ctx∗−−−−−−−−−−−−−−−−−−−−−−−→ → j′

j′
?
= j

Will reduce security to the hardness of decision LWE. Namely, we show that if D-LWE is hard
for params (n,m′ = m(`+ 1), q, error distrib.), then the scheme outlined above is secure. (We note
that this proof is slightly different than the one presented in GVW’s paper.)

Assume an adversary A that breaks the scheme with success probability 1
2 + ε. We build an

LWE-distinguisher B using A. The distinguisher B gets as input an instance of D-LWE, namely
(A∗, ~v∗), which we parse as follows:

2

Figure 1: An illustration of one gate in the circuit C

• A∗ = (A1|A2| . . . |A`|Aout) ∈ Zn×m′q , for `+ 1 matrices Ai, Aout ∈ Zn×mq .

• ~v∗ = (~v1|~v2|...|~vl|~vout), for `+ 1 vectors ~vi, ~vout ∈ Zmq .

B runs A to get the ”challenge pattern” x∗ ∈ {0, 1}`, then proceeds as follows:

• For i = 1, 2, . . . , `, let Ai,x∗i := Ai, and also set Aout,1 := Aout.

• Also choose the matrices Ai,x̄∗i
together with trapdoors, (Ai,x̄∗i

, ti,x̄∗i
)← TDGen(q,m, n, ..)

The public params that we give to A are Aout,1 and all the {Ai,b}i=1,...,`, b=0,1. When the attacker
asks for a secret key skP , with C being the circuit for P , then B does the following:

• For every wire i = 1, 2, ...N , denote by x∗i the bit on the i’th wire when evaluating the circuit
C(x∗). (Hence the input wires are labeled just as before, and for the internal wires we now
have the “active bit” on that wire x∗i and the “inactive bit” x̄∗i .)

• B chooses the A and R matrices for the skP so that on every wire i, we know a trapdoor for
Ai,x̄∗i

but not for Ai,x∗i . (And also we don’t know either of the trapdoors for the output wire.)

Specifically, fora gate G with input wires u, v and output wire w B does the following (see
illustration in Figure 1):

– For the bits x∗u, x
∗
v, choose random small matrices from the discrete Gaussian distribution

over the integers, Rx∗u,x∗v , R
′
x∗u,x

∗
v
← DZm×m,σ.

– Then B sets Aw,x∗w = Au,x∗uRx∗ux∗v +Av,x∗vR
′
x∗ux
∗
v
. That is, B computes the matrix Aw,x∗w in

the “forward direction” (first compute the R’s then A), and it does not know a trapdoor
for it.

– For each of the other three pairs (b, c) 6= (x∗u, x
∗
v), B uses the trapdoor that it knows for b

or c. First it chooses Aw,x̄∗w with a trapdoor,(Aw,x̄∗w , tw,x̄∗w)← TDGen(...). Then it uses
the same procedure as in the scheme itself to compute the relevant R’s.

3

When A sends the challenge messages (~M1, ~M2), B does the following:

• Use ~v∗i from the input of B as the ith input vector, corresponding to input wire i.

• Use ~c = ~vout +
⌊ q

2

⌋
~Mj for a random j ∈ {1, 2}.

When A guesses j′, then B output ”LWE” if j′ = j and ”random” otherwise.

Analysis of the distinguisher B. Observe that if the input to B is LWE instance then:

• All the vectors in the ciphertext CTx∗ that B generates have the correct distribution asin the
actual scheme.

• The matrices in all the secret keys skP have nearly the right distribution. This is because
setting R,R′ ← DZ,σ and Aw := AuR+AvR

′ (as B does) yields nearly the same distribution
as choosing at random Aw ← Zn×mq and R′ ← DZ,σ and using the trapdoor to sample
R← DL⊥δ (A),σ (as done in the scheme).

Therefore in the case that the input to B was indeed an LWE instance, A will guess j with
probability ≥ 1

2 + ε− negl .
On the other hand, if the input to B is random then in particular ~vout is random, so ~c is random,

independent of ~M1, ~M2, so A guesses j with probability ≤ 1
2 .

References

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee, Predicate encryption for
circuits, STOC, 2013.

4

