Lattices and Homomorphic Encryption, Spring 2013 Instructors: Shai Halevi, Tal Malkin

Attribute-Based Encryption for Circuits [GVW13]
April 12, 2013 Scribe: Kina Winoto

The scheme from [GVW13] works as follows:

(pp, msk) « Setup($) for ¢-bit input z’es, depth d circuits: (Note that for this scheme we need a
bound on depth of circuit, because at input the error expands as we get to output. Thus to get a
bound on the error, we need a bound on the depth.)

We need to generate two matrices for each input wire and a matrix for the output wire. For the
input wires we use the lattice-trapdoor-sampling procedure T'Gen (that returns a nearly matrix
A € Zy"™ together with a trapdoor ¢ for A), for the putput wire we just choose the matrix at
random:

e Fori=1,2,...,0 and b € {0,1}, set (Aip,t;p) < TGen (n,q, m,error distrib).
e For the output wire, choose a random matrix, A1 €r ngm.

The public parameters are pp = {A;p, Aout,1} and the master secret key is msk =

i€[f],b=0,1>
{tiab}ie[ﬂ,bzo,l'

CTy «<Encrypt(M € {0,1}™; pp,z € {0,1}):

e Choose at random 5 € Zy.
e Choose €7, ..., €p, Eout <— error distribution
o Set ; = §A; 4, + ¢ fori=1,...,0 and & = FAour1 + Eout + || M
o CT, = (x,{vi}le, c).
Note that we are only trying to hide M , not x.

skp < KeyGenerator(P, msk): Let C' be a circuit computing the predicate P, with input wires
1,...,¢, intermediate wires £ + 1,..., N — 1 and output wire V.

Note that in the delegation scheme in the last lecture we could generate parameters specifically
for a given circuit. However, in this construction we don’t know anything about the circuit when
we generate the parameters, so we have somehow “stitch” the new matrices that we generate for C
to the matrices A; 3 and Agyt,1 from the public key, using the trapdoors that we have in the master-
secret key. We will again use T'Gen to choose all the matrices that we need, and will use the
trapdoors to generates the R’s.

o fori=/0+1,...,N—1, be{0,1}, set (A;p,tip) <— TGen(n,q, m,error distrib.)
° AN,O €R ngm

e For every gate G with input wires u,v and output wire w, use the trapdoors for A, ., A, «
to sample the R matrices such that A, pRpe + Ay Ry, = Ay qoe) and R’s small. We do this
using the same method as the delegation scheme in last lecture:

— Choose R[G]},. <= Dgmxn 4

— Set A = Ay, Gbe) — AveR[G]y,., denote the columns of A by A = (51| . lgm)

— The i*" row of R is drawn from the discrete Gaussian distribution 7 < D . (Aup)so
5i u,b /s

Thus 75 is Gaussian such that A, ;7 = 5;
— Set R[Glpe = (T1] - - - |Tim)-

e The secret key is skp = {(R[G]pe, R[G];,) | G is a gate; b, ¢ are bits} .

M/ L+ Decrypt(CTx,skp): Evaluate the circtuit Cp(z) and remember the bits on all the wires.
If Cp(z) = 0 then output L.

If Cp(xz) = 1 then go over the circuit Cp in a bottom-up fashion. For every gate with input
wires u, v and output wire w, input bits b, ¢ and output bit d, and input vectors i, U, compute:

- - =
Wy = UpLpe + VL,

Denote the output vector by Wy and let gout = ¢ — Woyt (where ¢ is the “output vector” in the
ciphertext C'T;). Then output the vector M where for alli=1,...,m

5 q
M, = O%f@\<3
Lif 5] > ¢

Correctness

If p(z) = 1, then Wou = 5Aout,1 + € for some small €y. Also € is of the same form, except with
L%J M added. Hence & = SAout1 + €+ [¢/2] - M for a small €, and correctness follows.

Security

Recall the interaction between scheme and attacker in our security model:

Scheme . Attacker
X
pp *
pp, msk < Setup($) pi(z*) =0
pi q
skp, < KeyGen(p;; msk) { sk, } Vipi(z*) =0
i=1
j GR {1,2} mi,m2
* Ctz* .
cty+ < Encrypt(m;; pp, z*) —j
g 7.
j'=J

Will reduce security to the hardness of decision LWE. Namely, we show that if D-LWE is hard
for params (n,m’ = m(¢ + 1), g, error distrib.), then the scheme outlined above is secure. (We note
that this proof is slightly different than the one presented in GVW’s paper.)

Assume an adversary A that breaks the scheme with success probability % + e. We build an
LWE-distinguisher B using .A. The distinguisher B gets as input an instance of D-LWE, namely
(A*,7*), which we parse as follows:

G, x3) = Xy

G

/ 0\

Au,x{} Av,x;

Aty A t,

uxy’

v,X5"

Figure 1: An illustration of one gate in the circuit C'

o A* = (A1|Asg|...|Ap|Aout) € ngm/, for £ + 1 matrices A;, Aout € Zg™™.
o U = (01|03]...|0}|Tout), for £+ 1 vectors ¥y, Uout € Zy.

B runs A to get the ”challenge pattern” z* € {0,1}, then proceeds as follows:
e Fori=1,2,...,7 let Ai,x;k := A;, and also set Aout,1 = Aout-

t; =) < TDGen(q,m,n,..)

; *
1,7}

e Also choose the matrices A; ;» together with trapdoors, (4; ,
The public params that we give to A are Ay, and all the {A;p}i—1 ¢ p—0,1. When the attacker
asks for a secret key skp, with C' being the circuit for P, then B does the following:

e Lor every wire ¢ = 1,2, ...V, denote by x; the bit on the i’th wire when evaluating the circuit
C(x*). (Hence the input wires are labeled just as before, and for the internal wires we now
have the “active bit” on that wire z] and the “inactive bit” z7.)

e 3 chooses the A and R matrices for the skp so that on every wire ¢, we know a trapdoor for
A; but not for Ai,x;‘- (And also we don’t know either of the trapdoors for the output wire.)
Speéiﬁcally, fora gate G with input wires u,v and output wire w B does the following (see
illustration in Figure 1):

— For the bits z},,), choose random small matrices from the discrete Gaussian distribution
over the integers, Ryz 22, Riv 1o < Dgmxm o.

— Then B sets Ay zx = Ay Ryx x4+ Ay 2 Rf’vuxu That is, B computes the matrix A,z in
the “forward direction” (first compute the R’s then A), and it does not know a trapdoor
for it.

— For each of the other three pairs (b, ¢) # (7, x}), B uses the trapdoor that it knows for b
or c. First it chooses A, ;= with a trapdoor,(Ay zx , twzx) < TDGen(...). Then it uses
the same procedure as in the scheme itself to compute the relevant R’s.

When A sends the challenge messages (M 1, Mg), B does the following:
e Use ¥; from the input of B as the i*" input vector, corresponding to input wire i.
o Use C= Uyt + L%J Mj for a random j € {1,2}.

When A guesses j/, then B output "LWE” if 5/ = j and "random” otherwise.

Analysis of the distinguisher B. Observe that if the input to B is LWE instance then:

e All the vectors in the ciphertext CT,» that B generates have the correct distribution asin the
actual scheme.

e The matrices in all the secret keys skp have nearly the right distribution. This is because
setting R, R’ < Dz, and A,, := A, R+ A, R (as B does) yields nearly the same distribution
as choosing at random A, <+ ngm and R’ « Dz, and using the trapdoor to sample
R Dria)e (as done in the scheme).

Therefore in the case that the input to B was indeed an LWE instance, A will guess j with
probability > % + & — negl.

On the other hand, if the input to B is random then in particular ¥,y is random, so ¢ is random,
independent of Ml, Mg, so A guesses j with probability < %

References

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee, Predicate encryption for
circuits, STOC, 2013.

