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We show the main part of Regev’s [Reg09] proof that (under certain conditions) it is possible
to relate the average-case hardness of the learning with errors problem (LWE) to the worst-case
hardness of bounded distance decoding in a given lattice (BDD).

Preliminaries. We use the following parameters:
n - security parameter.
α - noise parameter (= 1

poly(n)).

q - modulus (� 1
α , sometimes even q = exp(n)).

Recall that for a continuous distribution Dr (with standard deviation r), D̃L,r denotes a discrete
distribution over a lattice (or coset of a lattice) L such that every vector ~z ∈ L has probability
mass proportional to Dr(~z).

1 The Main Lemma

In addition to an oracle that solves LWE, the reduction from BDD to LWE also needs access to an
oracle that samples short vectors in Λ∗ (Regev [Reg09] and Peikert [Pei09] show how to construct
such an oracle in specific settings). Additionally it relies on the following properties of the LWE
error distribution:

• The LWE error distribution is a projection of a spherical distribution Dαq onto its first
coordinate.

• The distribution Dαq is smooth in the following sense: If Λ is some lattice (or coset of a
lattice) with λn(Λ)� αq then if we choose ~x← D̃Λ,r and ~y ← Ds such that r2 + s2 = (αq)2

then the induced distribution on ~x+ ~y is close to Dαq.

For example the n-dimensional discrete Gaussian has these properties (where Λn � αq means
Λn·ω(

√
log(n)) < αq). In this case the LWE error distribution is just the one-dimensional Gaussian.

Lemma 1 ([Reg09]). There is an efficient algorithm that takes as input a basis B of an n-
dimensional lattice Λ = Λ(B), another parameter r � q

λ1(Λ) and a point ~x ∈ Rn such that

dist(x,Λ) < αq√
2r

and has access to two oracles:

• A “global” solver for LWE[n, α, q] (“global” in the sense that it is unrelated to the input lattice).

• A “lattice specific” sampler from DΛ∗,r.

The algorithm finds (with overwhelming probability) the (unique) point ~v ∈ Λ closest to ~x.

2 Proof Sketch of Lemma 1

Let ~v ∈ Λ be the closest point to ~x in Λ and let ~t ∈ Zn be the coefficients of ~v when expressed in

basis B (i.e., ~v = B~t) and denote ~s
def
= ~t mod q. We show a procedure that uses the sampler for

D̃Λ∗,r to generate instances of the distribution LWE~s. Then, we use the LWE solver to find ~s. (Note
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that ~s was not chosen uniformly at random in this case, but we previously showed a random self
reduction for LWE from a random ~s to any specific ~s.) Later we show how from ~s one can find ~t
thereby solving BDD.

LWE-Generate(B, ~x) (With access to D̃Λ∗,r)

1. Draw a sample ~y ← D̃Λ∗,r. Let ~a be the coefficients of ~y in basis B∗ (i.e. ~a = BT~y).

2. Draw an error term e← Φ α
2
√
π

.

3. Output (~a, b = 〈~x, ~y〉+ e mod q).

Claim 1. The output of LWE-Generate is statistically close to LWE~s except that the error parameter
is β ≤ α.

Proof. Need to show:

(A.) ~a is close to uniform in Znq .

(B.) Once ~a is fixed, ~b = 〈~s,~a〉+ Φβq (β ≤ α).

(A.) Consider the lattice q · Λ∗ and all its qn cosets

~a-coset = {B∗~a+ qΛ∗} = {B∗~z : ~z = ~a mod q}

The vector ~a output by the procedure is exactly the coset of ~y. Due to our choice of parameters, all
cosets are (almost) equally likely. Indeed, since r � q

λ1(Λ) = qλn(Λ∗)
n then D̃Λ∗,r is nearly uniform

among the cosets.

(B.) Conditioned on any fixed ~a ∈ Znq , the vector ~y is chosen from the discrete distribution

DqΛ∗+~a,r on the ~a-coset. Denoting ~w
def
= ~x− ~v we have

〈~x, ~y〉 = 〈~v + ~w, ~y〉
= 〈~v, ~y〉+ 〈~w, ~y〉
= 〈B~t, ~y〉+ 〈~w, ~y〉
= 〈~t, BT~y〉+ 〈~w, ~y〉
= 〈~s,~a〉+ 〈~w, ~y〉 mod q

hence b = 〈~s,~a〉+ 〈~w, ~y〉+ e mod q. Notice that ~s, ~a and ~w are fixed and the random part is just ~y
and e.

Recall that Φ α
2
√
π

is the projection of D α
2
√
π

onto the first coordinate, namely 〈~e1, D α
2
√
π
〉 and

since D is spherical then this is also the same as 〈~u,D α
2
√
π
〉 for any other unit vector ~u. In particular,

Φ α
2
√
π
≡ 〈~w,D α

2
√
π
〉 1
||~w|| ≡ 〈~w,D α

2
√
π||~w||
〉.

Hence 〈~w, ~y〉 + e ≡ 〈~w, ~y〉 + 〈~w, ~z〉 = 〈~w, ~y + ~z〉 where y ∈R D̃qΛ∗+~a,r and z ∈R Ds where
s = α

2
√
π||~w|| . Now ||~w|| is “short” so s is “large”. The parameters r, s are chosen large enough so that

D̃qΛ∗+~a,r is close to the continuous Dt where t =
√
r2 + s2. Therefore 〈~w, ~y〉+ e ≈ 〈~w,Dt〉 = Φ||~w||·t

and the parameters are such that ||~w|| · t ≤ αq.
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To solve BDD for ~x we can apply the LWE-solver with samples from LWE-Generate to find the
vector ~s. However, to solve BDD we need to find ~t (recall ~s = ~t mod q). To do this, first observe
that ~v = B~t = B~s + B(q~z) for some ~z ∈ Zn and consider ~x′ = ~x−B~s

q = ~x−~v
q + B~z. Notice that by

this calculation, the vector ~x′ is at distance ||~w||q (where ~w = ~x − ~v) from the lattice (specifically

the point B~z). If we could find the closest lattice point to ~x′ we would have ~z and therefore also ~v.
To do this just repeat the above argument again and again and at each iteration the distance from
the lattice is reduced by a factor of q. After n such iterations we can solve the problem by using,
e.g., Babai’s nearest plane algorithm.
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