
2-ROUND SECURE MPC
FROM

INDISTINGUISHABILITY

OBFUSCATION
Sanjam Garg, Craig Gentry, Shai Halevi (IBM),

Mariana Raykova (SRI)

BACKGROUND:

SECURE MULTI-PARTY

COMPUTATION
Many slides borrowed from Yehuda Lindell

2

Secure Multiparty Computation

• A set of 𝑛 parties with private inputs

• Wish to compute on their joint inputs

• While ensuring some security properties

• Privacy, Correctness,…

• Even if some parties are

adversarial

3

𝒙 𝒚

𝒛

𝑓(𝑥, 𝑦, 𝑧)

Adversarial behavior

Semi-honest: follows the protocol

• Trying to learn more than what’s

allowed by inspecting transcript

Malicious: deviates arbitrarily from protocol

• Trying to compromise privacy,

correctness, or both

4

Defining Security: the Ideal/Real Paradigm

• What is the best we could hope for?

• An incorruptible trusted party

• All parties send inputs to trusted party

• over perfectly secure communication lines

• Trusted party computes output, sends to parties

• This is an ideal world

• What can an adversary do?

• Just choose its input(s)…

5

• A real-world protocol is secure if it emulates

an ideal-world execution

• Any damage that can happen in the real world

can also happen in the ideal world

• Ideal-world adversary cannot do much, so

the same is true of the real-world adversary

• Privacy, correctness, independence of inputs

(and more), all hold in the real world

6

Defining Security: the Ideal/Real Paradigm

x
’ y

Ideal World

Trusted Party

f(x
’,y

) f(
x
’,
y
)

Real World

Protocol

arbitrary

output

protocol

output

arbitrary

output

f(x’,y)

y x

The Ideal/Real Paradigm

7

≈

The Ideal/Real Paradigm

A 𝑛-party protocol 𝜋 securely realizes the

𝑛-input function 𝑓(𝑥1, … , 𝑥𝑛) if

• For every real-world adversary 𝑨

• Controlling some bad players, interacting with protocol

• There exists an ideal-world simulator 𝑺

• Same bad players, interacting with the trusted party

• s.t. for any environment 𝒁 (supplying the inputs):

𝐕𝐢𝐞𝐰𝒁,𝑨
𝒓𝒆𝒂𝒍 ≈ 𝐕𝐢𝐞𝐰𝒁,𝑺

𝒊𝒅𝒆𝒂𝒍

[GMW86,…] Any 𝒇 has a secure protocol 𝝅𝒇

• Extensions to “interactive functions” […,C01,…]

8

Some Specifics of Our “Real World”

• We assume trusted setup (CRS)

• A random common reference string is chosen

honestly, made available to all the players

• E.g., hard-wired into the protocol implementation

• A broadcast channel is available

• If I received msg, everyone received same msg

• The set of bad players is determined before

the protocol execution

• Aka “static corruption model”

9

Round Complexity of Secure MPC

• Without privacy, one round is enough

• Everyone broadcast their inputs

• With privacy, need at least two

• Else, bad guys get access to residual function

𝑓𝑓𝑖𝑥𝑒𝑑 𝑔𝑜𝑜𝑑 𝑔𝑢𝑦𝑠 𝑖𝑛𝑝𝑢𝑡𝑠 𝑥 =

 𝑓(𝑓𝑖𝑥𝑒𝑑 𝑔𝑜𝑜𝑑 𝑔𝑢𝑦𝑠 𝑖𝑛𝑝𝑢𝑡𝑠, 𝑥)

• Can evaluate residual function on many inputs

• Yields more info on the good guys inputs than

what they can get in the ideal world

10

Round Complexity of Secure MPC

• Can we get 2-round secure computation?

• Two broadcast rounds after seeing the CRS

• Before this work, best result was 3 rounds

• [Asharov, Jain, Lopez-Alt, Tromer,

Vaikuntanathan, Wichs, Eurocrypt 2012],

using threshold (multi-key) FHE

• This work: doing it in two rounds

• Using heavy tools (iO, NIZK)

11

The Tools We Use

• We start from an Interactive Semi-Honest-Secure

Protocol for 𝑓

• Compile it into a 2-round protocols using:

• Indistinguishability Obfuscation

• Noninteractive Zero-Knowledge (w/ stat. soundness)

• Chosen-Ciphertext Secure Encryption

12

Main Tool: Obfuscation

• Make programs “unintelligible” while
maintaining their functionality

• Example from Wikipedia:

• Rigorous treatment [Hada’00, BGIRSVY’01,…]

• Constructions [GGHRSW13,…]

13

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU /

lreP rehtona tsuJ";sub p{

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+

=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P

.]/&& close$_}%p;wait

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep

rand(2)if/\S/;print

What’s “Unintelligible”?

• What we want: can’t do much more with

obfuscated code than running it on inputs

• At least: If function depends on secrets that are

not apparent in its I/O, then obfuscated code

does not reveal these secrets

• [B+01] show that this is impossible:

• Thm: If PRFs exist, then there exists PRF

families 𝐹 = 𝑓𝑠 , for which it is possible to

recover 𝑠 from any circuit that computes 𝑓𝑠.

• These PRFs are unobfuscatable

14

What’s “Unintelligible”?

• Okay, some function are bad, but not all…

• Can we get OBF() that does “as well as

possible” on every function?

• [B+01] suggested the weaker notion of

“indistinguishability obfuscation” (iO)

• Gives the “best-possible” guarantee [GR07]

• Turns out to suffice for many applications,

including ours

15

Defining Obfuscation

• An efficient public procedure OBF(*)

• Takes as input a program 𝐶

• E.g., encoded as a circuit

• Produce as output another program 𝐶′

• 𝐶′ computes the same function as 𝐶

• 𝐶′ at most polynomially larger than 𝐶

• Indistinguishability-Obfuscation (iO)

• If 𝐶1, 𝐶2 compute the same function (and

|𝐶1| = |𝐶2|), then 𝑂𝐵𝐹 𝐶1 ≈ 𝑂𝐵𝐹 𝐶2

16

Another Tool: Noninteractive ZK
 (slide due to Jens Groth)

17

 Prover Verifier Soundness:

Statement is true

Zero-knowledge:

Nothing but truth revealed

 Statement: 𝑥 ∈ 𝐿

Proof: 

𝑥, 𝑤 ∈ 𝑅𝐿

 Common reference string:

 0100…11010

Non Interactive Zero Knowledge

• Proving statement of the form 𝑥 ∈ 𝐿

• 𝐿 is an NP language, 𝑥 is public

NIZK has three algorithms (+ a simulator)

• CRS generation: 𝜎 ← 𝑲 1𝑘

• Proof: 𝜋 ← 𝑷(𝜎, 𝑥, 𝑤)

• Verification: 𝑽 𝜎, 𝑥, 𝜋 = 0/1

• Simulator: 𝜎, 𝜏 ← 𝑺1 1𝑘 , 𝜋 ← 𝑺𝟐(𝜎, 𝜏, 𝑥)

18

Non Interactive Zero Knowledge

Perfect completeness: for all 𝑥,𝑤 ∈ 𝑅𝐿

Pr
𝜎 ← 𝐾 1𝑘 , 𝜋 ← 𝑃 𝜎, 𝑥, 𝑤

𝑉 𝜎, 𝑥, 𝜋 = 1
= 1

Statistical soundness:

Pr
𝜎 ← 𝐾 1𝑘

∃ 𝑥, 𝜋 , 𝑥 ∉ 𝐿, 𝑉 𝜎, 𝑥, 𝜋 = 1
= 𝑛𝑒𝑔𝑙(𝑘)

Computational ZK: for all (𝑥, 𝑤) ∈ 𝑅𝐿

𝜎 ← 𝐾 1𝑘 , 𝜋 ← 𝑃 𝜎, 𝑥, 𝑤 ≈𝑐 𝑆(1𝑘 , 𝑥)

19

Last Tool: CCA-Secure Encryption

Public-key encryption (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)

• Adversary wins if 𝑐∗ not queries and 𝑏′ = 𝑏

• Scheme is secure if ∀𝐴, Pr A 𝑤𝑖𝑛𝑠 ≲ 1
2

20

𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑘

Challenger 𝑝𝑘, 𝑠𝑘 Adversary 𝑝𝑘 𝑐𝑖

𝑚𝑖 = 𝐷𝑒𝑐𝑠𝑘(𝑐𝑖)

𝑚0
∗ , 𝑚1

∗

𝑐∗ ← 𝐸𝑛𝑐𝑝𝑘 𝑚𝑏
∗ 𝑏 ← {0,1}

𝑏′

OUR PROTOCOL

21

Starting Point: Use Obfuscation

• Start from any 𝑡-round secure MPC Π

• Consider the next-message functions

𝑁𝑒𝑥𝑡𝑀𝑠𝑔𝑥𝑖,𝑟𝑖 Π 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑠𝑜 𝑓𝑎𝑟 =

𝑛𝑒𝑥𝑡 Π 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖
• With input, Π-randomness hard-wired in

22

Starting Point: Use Obfuscation

• Players obfuscate, broadcast, their

next-message functions

• With input, Π-randomness hard-wired in

• Each player obfuscates one function per round

• Then everyone can locally evaluate the

obfuscated functions to get the final output

• But this is a one-round protocol, so it must

leak the residual function

23

Add a Commitment Round

• 1st round: commit to input, Π-randomness

• Using CCA-secure encryption

• 2nd round: obfuscate next-message functions

• With input, Π-randomness hard-wired in

• Also the 1st-round commitments hard-wired in

• We want next-msg-functions to work only if
transcript is consistent with commitments

• This will prevent bad guys from using it with
inputs other than ones committed in 1st round

24

Proofs of Consistency

• 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝐜𝐨𝐦𝐦𝐬,𝝈,𝒓𝒊

′
′ 𝑡𝑟𝑎𝑛𝑠 so far, proofs =

verify proofs that 𝑡𝑟𝑎𝑛𝑠 consistent with 𝑐𝑜𝑚𝑚𝑠, 𝜎
If any proof fails output ⊥

else output next Π msg, new proof

• New-proof generated with randomness 𝑟𝑖
′

• Proves that next-msg was generated by Π
• on (𝑡𝑟𝑎𝑛𝑠, 𝑥𝑖 , 𝑟𝑖), for some 𝑥𝑖 , 𝑟𝑖 consistent with 𝑐𝑜𝑚𝑚𝑠, 𝜎

• Each party obfuscates, broadcasts
𝑁𝑒𝑥𝑡𝑀𝑠𝑔

𝑥𝑖,𝑟𝑖,𝑐𝑜𝑚𝑚𝑠,𝜎,𝑟𝑖
′

′

25

Is It Secure?

• It would be if we had “ideal obfuscation”

• “Easy to show” that this is secure when the

𝑁𝑒𝑥𝑡𝑀𝑠𝑔′ functions are oracles

• Essentially since Π+proofs is resettably-secure

• Key observation: transcript fixed after 1st round

• This assumes that Π can handle bad randomness

• Alternatively we can include coin-tossing in the compiler

• But we only have iO

• So we must jump through a few more hoops

26

Dealing with iO

• Change the obfuscated functions as follows:

• 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝑐𝑜𝑚𝑚𝑠,𝜎,𝑟𝑖

′,𝑏,𝑧
′′ 𝑡𝑟𝑎𝑛𝑠 so far, proofs =

verify proofs that 𝑡𝑟𝑎𝑛𝑠 consistent with 𝑐𝑜𝑚𝑚𝑠, 𝜎
If any proof fails output ⊥

else
 if b = 0 output next Π msg, new proof
if b = 1 output 𝑧

• Each player obfuscates 𝑡 such functions
• One for every communication round

• All with same 𝑥𝑖 , 𝑟𝑖 , 𝑐𝑜𝑚𝑚𝑠, 𝜎, independent 𝑟𝑖
′’s

• All with 𝑏 = 0, 𝑧 = 0ℓ

27

The Full* Compiler

• CRS: 𝑝𝑘 of CCA-PKE, 𝜎 of NIZK

• 1st round: 𝑃𝑖(𝑥𝑖) chooses 𝑟𝑖, broadcasts

𝑐𝑖 = 𝐸𝑝𝑘(𝑖, 𝑥𝑖), 𝑑𝑖 = 𝐸𝑝𝑘(𝑖, 𝑟𝑖)

• 2nd round: 𝑃𝑖 chooses 𝑟𝑖,1
′ …𝑟𝑖,𝑡

′ ’s, broadcasts

𝐹𝑖,𝑗 = 𝑂𝐵𝐹 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝑐 ,𝑑 ,𝜎,𝑟𝑖,𝑗

′ ,0,0
′′ ⋅

• Local evaluations: For 𝑗 = 1,… , 𝑡, 𝑖 = 1, … , 𝑛,

use 𝐹𝑖,𝑗(transcript so far, proofs so far) to get

𝑃𝑖 ’s 𝑗’th message and a proof for it

28

Complexity, Functionality

• 2 rounds after seeing CRS

• Every 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′:

• Checks at most 𝑡 ⋅ 𝑛 proofs

• Computes one protocol message and proves it

Has complexity at most 𝑝𝑜𝑙𝑦 𝑘 ⋅ 𝑇𝑖𝑚𝑒(Π)

• OBF increases complexity by 𝑝𝑜𝑙𝑦 𝑘 factor

• Correctness follows from correctness of Π
and 𝑂𝐵𝐹 and completeness of proof system

29

Security

Thm: The compiled protocol UC-securely

realizes 𝑓 against malicious adversaries if

• Π securely realizes 𝑓 against semi-honest

• And can tolerate bad randomness

• Proof system is NIZK

• Encryption is CCA secure

• OBF is iO

30

Proof Of Security

• Main idea in the proof:

• Recall that 1st round fixes the Π-transcript

• So these two circuits compute the same things:

• The 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′ as constructed in the protocol (𝑏 = 0)

• A 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′ function with the fixed transcript (𝑏 = 1)

• The simulator will use the latter

• By iO, these are indistinguishable.

• Formally: fix adversary 𝐴, we describe a

simulator, prove its output indistinguishable

31

The Simulator (1)

• CRS: 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑘 , (𝜎, 𝜏) ← 𝑆1 1𝑘

• Good players’ ciphertexts:
𝑐𝑖 ← 𝐸𝑛𝑐𝑝𝑘 𝑖, 0 , 𝑑𝑖 ← 𝐸𝑛𝑐𝑝𝑘(𝑖, 0)

• Bad players’ ciphertexts:
𝑐𝑖 , 𝑑𝑖 𝑖 bad ← 𝐴 𝑝𝑘, 𝜎, 𝑐𝑖 , 𝑑𝑖 𝑖 good

• Decrypts bad players’ 𝑐𝑖 , 𝑑𝑖
• Yields input, randomness for bad players

• If invalid ciphertext, use default value

• Sends inputs to trusted party, get outputs

32

The Simulator (2)

• Runs Π-simulator on bad players’

(input, output, rand), gets a Π-transcript

• Runs 𝑆2 𝜎, 𝜏,⋅ of NIZK, gets proofs for

Π-messages of good players

• Relative to their 𝑐𝑖 , 𝑑𝑖’s

• Obfuscate 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′ for good players

• Using 𝑥𝑖 = 0, 𝑟𝑖 = 0, random 𝑟𝑖,𝑗
′ ’s

• Also using 𝑏 = 1, 𝑧 = (𝑚𝑠𝑔, 𝑝𝑟𝑜𝑜𝑓)

• 𝑚𝑠𝑔 from simulated transcript, 𝑝𝑟𝑜𝑜𝑓 by NIZK sim.

33

Real/Ideal Indistinguishability

• We prove indistinguishability by going

through several hybrids

34

Adversary

𝐴

Honest Players Trusted Party

𝑇

Hybrid Manager

Environment

𝐻𝑀: anything that

 doesn’t fit elsewhere

This interface is

indistinguishable

Between hybrids

Real/Ideal Indistinguishability

•𝑯𝟏 is the real-world game

• HM runs setup, trusted party is never used

• Lemma: After 1st round, ∃ ≤ 1 Π-transcript for

which ∃ proofs that would make 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′′
output anything other than ⊥

• Whp over the CRS, by statistical NIZK soundness

• Moreover, given 𝑠𝑘 the HM can efficiently

compute that transcript

• Denote that transcript by 𝑡𝑟∗

35

Real/Ideal Indistinguishability

•𝑯𝟐: Obfuscate different functions

• In 𝐻1 we had 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝑐 ,𝑑,𝜎,𝑟𝑖,𝑗

′ ,0,0
′′′ (𝑡𝑟, pfs)

• Now we have 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝟎,𝟎, 𝑐 ,𝑑,𝜎,𝑟𝑖,𝑗

′ ,𝟏,𝒛
′′′ (𝑡𝑟, pfs)

• 𝑧 = (𝑚𝑠𝑔𝑧, pf𝑧) contains the message from 𝑡𝑟∗, NIZK

proof corresponding to 𝑡𝑟∗ wrt 𝜎, 𝑟𝑖,𝑗
′

• By lemma from above:

• Both functions output ⊥ under same conditions

• If output ≠ ⊥ then 𝑡𝑟 = 𝑡𝑟∗, so both functions

output (𝑚𝑠𝑔𝑧, pf𝑧)

36

Real/Ideal Indistinguishability

•𝑯𝟐: Obfuscate different functions

• In 𝐻1 we had 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝑐 ,𝑑,𝜎,𝑟𝑖,𝑗

′ ,0,0
′′′ (𝑡𝑟, pfs)

• Now we have 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝟎,𝟎, 𝑐 ,𝑑,𝜎,𝑟𝑖,𝑗

′ ,𝟏,𝒛
′′′ (𝑡𝑟, pfs)

• 𝑧 = (𝑚𝑠𝑔𝑧, pf𝑧) contains the message from 𝑡𝑟∗, NIZK

proof corresponding to 𝑡𝑟∗ wrt 𝜎, 𝑟𝑖,𝑗
′

• They are functionally identical (whp over CRS)

• By iO, their obfuscation is indistinguishable

• So 𝐻1 ≈ 𝐻2

37

Real/Ideal Indistinguishability

•𝑯𝟑: Simulated CRS & NIZKs

• Indistinguishable by computational ZK

•𝑯𝟒: Encrypt zeroes for honest players

instead of inputs & randomness

• Indistinguishable by security of the PKE

• Need CCA-security to decrypt 𝐴’s ciphertexts

• If adversary copies a good-player ciphertext, then

treat it as invalid (since it encrypts the wrong index)

38

Real/Ideal Indistinguishability

•𝑯𝟓: Use Π-simulator to generate 𝑡𝑟∗

• Send inputs, get outputs from trusted party

• Indistinguishable by security of Π

• This is the ideal world, HM is the simulator

39

Reducing Communication Complexity

• The basic construction has communication

complexity depends on the complexity of Π

• Which is at least as large as that of 𝑓

• To save communication, use multi-key HE

• Players encrypt their input, broadcast ctxts

• Use multi-key HE to evaluate

• Apply 2nd round of our protocol to the HE

decryption function

40

Questions?

41

