2-ROUND SECURE MPC
FROM

INDISTINGUISHABILITY
OBFUSCATION

Sanjam Garg, Craig Gentry, Shai Halevi (IBM),
Mariana Raykova (SRI)

BACKGROUND:
SECURE MULTI-PARTY

COMPUTATION

Many slides borrowed from Yehuda Lindell

Secure Multiparty Computation

- A set of n parties with private inputs
- Wish to compute on their joint inputs

- While ensuring some securlty properties
- Privacy, Correctness,. V)

- Even If some parties are
adversarial

pLUTI- ANl
I~
SSIS

I~
SIS
(==§|=
-
Tl
r='~'~
rrrrr
w:'h: ~

-z,,\:_h, -~

Adversarial behavior

Semi-honest: follows the protocol

- Trying to learn more than what's e < > é"/

allowed by inspecting transcript ?QWFR HRV
4

@ /N ?& !

Malicious: deviates arbitrarily from protocol

- Trying to compromise privacy,
correctness, or both

Defining Security: the ldeal/Real Paradigm

-What Is the best we could hope for?
- An incorruptible trusted party

- All parties send inputs to trusted party
- over perfectly secure communication lines

- Trusted party computes output, sends to parties
- This Is an ideal world

-What can an adversary do?
- Just choose its input(s)...

. R
Defining Security: the ldeal/Real Paradigm

- A real-world protocol is secure if it emulates
an ideal-world execution

- Any damage that can happen in the real world
can also happen in the ideal world

- ldeal-world adversary cannot do much, so
the same Is true of the real-world adversary

- Privacy, correctness, independence of inputs
(and more), all hold in the real world

The Ideal/Real Paradigm

Real World

Ideal World
(4

Protocol
Trusted Party

arbitrary protocol
output output

arbitrary f(x’,y)
output

S N
The Ideal/Real Paradigm

A n-party protocol = securely realizes the
n-input function f (x4, ..., x,) If
- For every real-world adversary 4
- Controlling some bad players, interacting with protocol

- There exists an ideal-world simulator S
- Same bad players, interacting with the trusted party

- S.t. for any environment Z (supplying the inputs):

View}5! ~ View} ¢

[GMWS86,...] Any f has a secure protocol

- Extensions to “interactive functions” [...,C01,...]

. S
Some Specifics of Our “Real World”

-We assume trusted setup (CRS)

- A random common reference string is chosen
honestly, made available to all the players

- E.g., hard-wired into the protocol implementation
- A broadcast channel is available
- If | recelved msg, everyone received same msg

- The set of bad players is determined before
the protocol execution

- Aka “static corruption model”

Round Complexity of Secure MPC

- Without privacy, one round is enough
- Everyone broadcast their inputs

- With privacy, need at least two
- Else, bad guys get access to residual function
ffixed good guys inputs (f) —
f(fixed good guys inputs, x)
- Can evaluate residual function on many inputs

- Yields more info on the good guys inputs than
what they can get in the ideal world

Round Complexity of Secure MPC

- Can we get 2-round secure computation?
- Two broadcast rounds after seeing the CRS

- Before this work, best result was 3 rounds

- [Asharov, Jain, Lopez-Alt, Tromer,
Vaikuntanathan, Wichs, Eurocrypt 2012],
using threshold (multi-key) FHE

- This work: doing It in two rounds
- Using heavy tools (10, NIZK)

The Tools We Use

- We start from an Interactive Semi-Honest-Secure
Protocol for f

- Compile it into a 2-round protocols using:
- Indistinguishability Obfuscation

- Noninteractive Zero-Knowledge (w/ stat. soundness)
- Chosen-Ciphertext Secure Encryption

Main Tool: Obfuscation

- Make programs “unintelligible” while
maintaining their functionality

- Example from Wikipedia:

@P=split//," .URRUU\c8R";@d=split//,"\nrekcah xinU /
lreP rehtona tsud";sub p/{
Cp{"rSp","uSp"}=(P,P) ;pipe"rsp", "usSp"; ++Sp; (Sg*=2) +
=S$f=!fork;map{$P=S$P[$f ord (Sp{$ })&6];Sp{S }=/
"SP/ix?SP:close$_l}keysiplp;pip;p;pimap{Sp{$_}=~/"[P
.1/&& close$ }%p;wait
until$?;map{/"r/&&<$ >}%p;$ =$d[Sqgl;sleep
rand(2)if/\S/;print

- Rigorous treatment [Hada'00, BGIRSVY'01,...]
- Constructions [GGHRSW13,...]

What's “Unintelligible™?

-What we want: can't do much more with
obfuscated code than running it on Iinputs
- At least: If function depends on secrets that are

not apparent in its 1/O, then obfuscated code
does not reveal these secrets

- [B+01] show that this Is impossible:

- Thm: If PRFs exist, then there exists PRF
families F = {f.}, for which it is possible to
recover s from any circuit that computes f.

- These PRFs are unobfuscatable

What's “Unintelligible™?

- Okay, some function are bad, but not all...

- Can we get OBF() that does “as well as
possible” on every function?

- [B+01] suggested the weaker notion of
“Indistinguishability obfuscation” (i1O)
- Gives the “best-possible™ guarantee [GRO7]

- Turns out to suffice for many applications,
iIncluding ours

Defining Obfuscation

- An efficient public procedure OBF(*)

- Takes as Input a program C
- E.g., encoded as a circuit

- Produce as output another program C
- C' computes the same function as C
- C' at most polynomially larger than C

- Indistinguishability-Obfuscation (10)

- If C4, C, compute the same function (and
|C1] = |C;]), then OBF(C;) =~ OBF((C;)

/

Another Tool: Noninteractive ZK

(slide due to Jens Groth)

Common reference string:
0100...11010

@ Statement: x € L

Zero-knowledge: Soundness:
Nothing but truth revealed Statement is true

Non Interactive Zero Knowledge

- Proving statement of the form x € L
- L Is an NP language, x is public

NIZK has three algorithms (+ a simulator)
-CRS generation: g « K(1%)

-Proof: m « P(o,x,w)

-Verification: V(o,x,m) = 0/1

- Simulator: (o,7) « Sl(lk), T« Sy(0,T,%)

Non Interactive Zero Knowledge

Perfect completeness: for all (x,w) € R;

Pr g « K(lk),n « P(o,x,w) _ 1
V(io,x,m) =1
Statlstlcal soundness:
.]
Pr 7T K(l) = negl(k)
3(x,m),x ¢ L,V(o,x,m) = 1]

Computational ZK: for all (x, w) e R;
lo « K(1%),m « P(0,x,w)| =€ [S(1¥, x)]

Last Tool: CCA-Secure Encryption

Public-key encryption (KeyGen, Enc, Dec)
(sk,pk) « KeyGen(1%)

Challenger(pk, sk) c. Adversary(pk)
P l
= Do)
Mg, mj
b« {01} ("« Enc,,(my)
b " X

- Adversary wins if ¢* not queriesand b’ = b
- Scheme is secure if VA4, Pr[A wins] < 1/,

OUR PROTOCOL

Starting Point: Use Obfuscation

- Start from any t-round secure MPC 11
- Consider the next-message functions
NextMsgy, (Il transcript so far) =

next Il message of player i
- With input, II-randomness hard-wired In

Starting Point: Use Obfuscation

- Players obfuscate, broadcast, their
next-message functions

- With input, II-randomness hard-wired In
- Each player obfuscates one function per round

- Then everyone can locally evaluate the
obfuscated functions to get the final output

- But this I1s a one-round protocol, so it must
leak the residual function

Add a Commitment Round

- 15t round: commit to input, IT-randomness
- Using CCA-secure encryption
- 2" round: obfuscate next-message functions

- With input, II-randomness hard-wired In
- Also the 1st-round commitments hard-wired in

- We want next-msg-functions to work only If
transcript is consistent with commitments

- This will prevent bad guys from using it with
iInputs other than ones committed in 15t round

Proofs of Consistency

' /(trans so far, proofs) =
Xi,7';,COMMS,0,T;

- NextMsg

(verify proofs that trans consistent with comms, o
[f any proof fails output L

\ else output (next I1 msg, new proof)

A

- New-proof generated with randomness r;

- Proves that next-msg was generated by I1
- on (trans, x;, 1;), for some x;, r; consistent with comms, o

- Each party obfuscates, broadcasts
NextMsg'

!
X{,T{,COMMS,0,T;

IS It Secure?

- It would be If we had “ideal obfuscation”

- “Easy to show" that this is secure when the
NextMsg' functions are oracles

- Essentially since II+proofs is resettably-secure
- Key observation: transcript fixed after 15 round

- This assumes that IT can handle bad randomness
- Alternatively we can include coin-tossing in the compiler

- But we only have IO
- S0 we must jump through a few more hoops

Dealing with 10

- Change the obfuscated functions as follows:

- NextMsg'" (trans so far, proofs) =

xi,ri,comms,a,ri',b,z
rverify proofs that trans consistent with comms, o
[f any proof fails output L

{ if b = 0 output (next II msg, new proof)
else 1 .
if b =1 output z

A

\

- Each player obfuscates t such functions
- One for every communication round
- All with same x;, r;, comms, o, independent r;’s
-Allwith b = 0,z = 0°

The Full* Compller

-CRS: pk of CCA-PKE, o of NIZK
- 18t round: P;(x;) chooses r;, broadcasts
¢; = Epi(i,x;),d; = Epp (1, 17)
-2" round: P; chooses 17 ...1; 'S, broadcasts

F;; = OBF (NextMsg dor _06(-))

-Local evaluations: Forj =1, ...,t,i =1, ...,n,
use F; ;(transcript so far, proofs so far) to get

P;’s j'th message and a proof for it

Complexity, Functionality

-2 rounds after seeing CRS

-Every NextMsg'":
- Checks at most t - n proofs
- Computes one protocol message and proves it
=»Has complexity at most poly(k) - Time(II)

- OBF increases complexity by poly(k) factor

- Correctness follows from correctness of I1
and OBF and completeness of proof system

Security

Thm: The compiled protocol UC-securely
realizes f against malicious adversaries If

- Il securely realizes f against semi-honest
- And can tolerate bad randomness

- Proof system is NIZK
- Encryption is CCA secure
-OBF is 10

Proof Of Security

- Main idea in the proof:
- Recall that 15t round fixes the II-transcript

- So these two circuits compute the same things:
- The NextMsg'' as constructed in the protocol (b = 0)
- A NextMsg" function with the fixed transcript (b = 1)

- The simulator will use the latter
- By 10, these are indistinguishable. -

- Formally: fix adversary A, we describe a
simulator, prove its output indistinguishable

The Simulator (1)

- CRS: (sk,pk) « KeyGen(1%), (a,7) « S;(1%)
- Good players’ ciphertexts:
¢; < Ency(i,0),d; « Encyy(i,0)
- Bad players’ ciphertexts:
{ci,di}ivad < A(pk, 0,{c;, di}i good)
- Decrypts bad players’ ¢;, d;

- Yields input, randomness for bad players
- If invalid ciphertext, use default value

- Sends Inputs to trusted party, get outputs

The Simulator (2)

- Runs II-simulator on bad players’
(Input, output, rand), gets a Il-transcript
-Runs S, (o, 1,) of NIZK, gets proofs for
[I-messages of good players
- Relative to their ¢;, d;’s

- Obfuscate NextMsg'' for good players

-Using x; = 0,7; = 0, random ry ; ’s

- Also using b = 1,z = (msg, proof)
- msg from simulated transcript, proof by NIZK sim.

Real/ldeal Indistinguishability

- We prove indistinguishability by going
through several hybrids
This interface is

indistinguishable |

Between hybrliis/v*

Adversary Honest Players Trusted Party
T

HM: anything that
doesn’t fit elsewhere

Real/ldeal Indistinguishability

- H4 Is the real-world game
- HM runs setup, trusted party is never used

-Lemma: After 15t round, 3 < 1 II-transcript for
which 3 proofs that would make NextMsg'"
output anything other than L
- Whp over the CRS, by statistical NIZK soundness

- Moreover, given sk the HM can efficiently
compute that transcript

- Denote that transcript by tr”

Real/ldeal Indistinguishability

- H,: Obfuscate different functions
-In H; we had NextMs Iyir. dor! 00 (tr, pfs)

77

- Now we have NextMs 9oo ¢ darl 1z (tr, pfs)

- z = (msg,, pf,) contains the message from tr*, NIZK
proof corresponding to tr* wrt o, 7} i

- By lemma from above:
- Both functions output L under same conditions

- If output # 1 then tr = tr*, so both functions
output (msgz, pt;)

Real/ldeal Indistinguishability

- H,: Obfuscate different functions
-In H; we had NextMs Iyir. dor! 00 (tr, pfs)

77

- Now we have NextMs 9oo ¢ darl 1z (tr, pfs)

- z = (msg,, pf,) contains the message from tr*, NIZK
proof corresponding to tr* wrt o, 7} i

- They are functionally identical (whp over CRS)

- By 10, their obfuscation Is indistinguishable
° SO Hl ~ H2

Real/ldeal Indistinguishability

- H3: Simulated CRS & NIZKs
- Indistinguishable by computational ZK

- H,: Encrypt zeroes for honest players
Instead of inputs & randomness
- Indistinguishable by security of the PKE

- Need CCA-security to decrypt A’s ciphertexts

- If adversary copies a good-player ciphertext, then
treat it as invalid (since it encrypts the wrong index)

Real/ldeal Indistinguishability

- Hs: Use II-simulator to generate tr”
- Send inputs, get outputs from trusted party
- Indistinguishable by security of I1
- This is the ideal world, HM is the simulator [l

Reducing Communication Complexity

- The basic construction has communication
complexity depends on the complexity of I1

- Which is at least as large as that of f

- To save communication, use multi-key HE
- Players encrypt their input, broadcast ctxts
- Use multi-key HE to evaluate

- Apply 2" round of our protocol to the HE
decryption function

Questions?

