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BACKGROUND: 

SECURE MULTI-PARTY 

COMPUTATION 
Many slides borrowed from Yehuda Lindell 
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Secure Multiparty Computation 

• A set of 𝑛 parties with private inputs 

• Wish to compute on their joint inputs 

•  While ensuring some security properties 

• Privacy, Correctness,… 

 

• Even if some parties are 

adversarial 
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𝒛 

𝑓(𝑥, 𝑦, 𝑧) 



Adversarial behavior 

Semi-honest: follows the protocol 

• Trying to learn more than what’s 

allowed by inspecting transcript 

 
 

Malicious: deviates arbitrarily from protocol 

• Trying to compromise privacy, 

correctness, or both 
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Defining Security: the Ideal/Real Paradigm 

• What is the best we could hope for? 

• An incorruptible trusted party 

• All parties send inputs to trusted party 

• over perfectly secure communication lines 

• Trusted party computes output, sends to parties 

• This is an ideal world 

• What can an adversary do? 

• Just choose its input(s)… 
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• A real-world protocol is secure if it emulates  

an ideal-world execution 

• Any damage that can happen in the real world 

can also happen in the ideal world 

• Ideal-world adversary cannot do much, so 

the same is true of the real-world adversary 

• Privacy, correctness, independence of inputs 

(and more), all hold in the real world 

6 

Defining Security: the Ideal/Real Paradigm 



x
’ y

 

Ideal World 

Trusted Party 

f(x
’,y

) f(
x
’,
y
) 

Real World 

Protocol 

arbitrary 

output 

protocol 

output 

arbitrary 

output 

f(x’,y) 

y x 

The Ideal/Real Paradigm 

7 

≈ 



The Ideal/Real Paradigm 

A 𝑛-party protocol 𝜋 securely realizes the  

𝑛-input function 𝑓(𝑥1, … , 𝑥𝑛) if 

• For every real-world adversary 𝑨 

• Controlling some bad players, interacting with protocol 

• There exists an ideal-world simulator 𝑺 

• Same bad players, interacting with the trusted party 

• s.t. for any environment 𝒁 (supplying the inputs): 

𝐕𝐢𝐞𝐰𝒁,𝑨
𝒓𝒆𝒂𝒍 ≈ 𝐕𝐢𝐞𝐰𝒁,𝑺

𝒊𝒅𝒆𝒂𝒍 

[GMW86,…] Any 𝒇 has a secure protocol 𝝅𝒇 

• Extensions to “interactive functions” […,C01,…] 
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Some Specifics of Our “Real World” 

• We assume trusted setup (CRS) 

• A random common reference string is chosen 

honestly, made available to all the players 

• E.g., hard-wired into the protocol implementation 

• A broadcast channel is available 

• If I received msg, everyone received same msg 

• The set of bad players is determined before 

the protocol execution 

• Aka “static corruption model” 
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Round Complexity of Secure MPC 

• Without privacy, one round is enough 

• Everyone broadcast their inputs 

• With privacy, need at least two 

• Else, bad guys get access to residual function 

𝑓𝑓𝑖𝑥𝑒𝑑 𝑔𝑜𝑜𝑑 𝑔𝑢𝑦𝑠 𝑖𝑛𝑝𝑢𝑡𝑠 𝑥 =

                      𝑓(𝑓𝑖𝑥𝑒𝑑 𝑔𝑜𝑜𝑑 𝑔𝑢𝑦𝑠 𝑖𝑛𝑝𝑢𝑡𝑠, 𝑥 )  

• Can evaluate residual function on many inputs 

• Yields more info on the good guys inputs than 

what they can get in the ideal world 
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Round Complexity of Secure MPC 

• Can we get 2-round secure computation? 

• Two broadcast rounds after seeing the CRS 
 

• Before this work, best result was 3 rounds 

• [Asharov, Jain, Lopez-Alt, Tromer, 

Vaikuntanathan, Wichs, Eurocrypt 2012], 

using threshold (multi-key) FHE 
 

• This work: doing it in two rounds 

• Using heavy tools (iO, NIZK) 
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The Tools We Use 

• We start from an Interactive Semi-Honest-Secure 

Protocol for 𝑓 

• Compile it into a 2-round protocols using: 

• Indistinguishability Obfuscation 

• Noninteractive Zero-Knowledge (w/ stat. soundness) 

• Chosen-Ciphertext Secure Encryption 
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Main Tool: Obfuscation 

• Make programs “unintelligible” while 
maintaining their functionality 

• Example from Wikipedia: 

 

 

 

 

• Rigorous treatment [Hada’00, BGIRSVY’01,…] 

• Constructions [GGHRSW13,…]  
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@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU / 

lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+

=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P

.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 



What’s “Unintelligible”? 

• What we want: can’t do much more with 

obfuscated code than running it on inputs 

• At least: If function depends on secrets that are 

not apparent in its I/O, then obfuscated code 

does not reveal these secrets 

• [B+01] show that this is impossible: 

• Thm: If PRFs exist, then there exists PRF 

families 𝐹 = 𝑓𝑠 , for which it is possible to 

recover 𝑠 from any circuit that computes 𝑓𝑠. 

• These PRFs are unobfuscatable 
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What’s “Unintelligible”? 

• Okay, some function are bad, but not all… 

• Can we get OBF() that does “as well as 

possible” on every function? 

• [B+01] suggested the weaker notion of 

“indistinguishability obfuscation” (iO) 

• Gives the “best-possible” guarantee [GR07] 

• Turns out to suffice for many applications, 

including ours 
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Defining Obfuscation 

• An efficient public procedure OBF(*) 

• Takes as input a program 𝐶 

• E.g., encoded as a circuit 

• Produce as output another program 𝐶′ 

• 𝐶′ computes the same function as 𝐶  

• 𝐶′ at most polynomially larger than 𝐶 

• Indistinguishability-Obfuscation (iO) 

• If 𝐶1, 𝐶2 compute the same function (and 

|𝐶1| = |𝐶2|), then 𝑂𝐵𝐹 𝐶1 ≈ 𝑂𝐵𝐹 𝐶2  
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Another Tool: Noninteractive ZK 
     (slide due to Jens Groth) 
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  Prover    Verifier Soundness: 

Statement is true 

Zero-knowledge: 

Nothing but truth revealed 

   Statement:  𝑥 ∈ 𝐿 

Proof:  

𝑥, 𝑤 ∈ 𝑅𝐿  

  Common reference string:

 0100…11010 



Non Interactive Zero Knowledge 

• Proving statement of the form 𝑥 ∈ 𝐿 

• 𝐿 is an NP language, 𝑥 is public 
 

NIZK has three algorithms (+ a simulator) 

• CRS generation: 𝜎 ← 𝑲 1𝑘  

• Proof: 𝜋 ← 𝑷(𝜎, 𝑥, 𝑤) 

• Verification: 𝑽 𝜎, 𝑥, 𝜋 = 0/1 

• Simulator: 𝜎, 𝜏 ← 𝑺1 1𝑘 , 𝜋 ← 𝑺𝟐(𝜎, 𝜏, 𝑥) 

18 



Non Interactive Zero Knowledge 

Perfect completeness: for all 𝑥,𝑤 ∈ 𝑅𝐿 

Pr
𝜎 ← 𝐾 1𝑘 , 𝜋 ← 𝑃 𝜎, 𝑥, 𝑤  

𝑉 𝜎, 𝑥, 𝜋 = 1
= 1 

 

Statistical soundness: 

Pr 
𝜎 ← 𝐾 1𝑘

∃ 𝑥, 𝜋 , 𝑥 ∉ 𝐿, 𝑉 𝜎, 𝑥, 𝜋 = 1
= 𝑛𝑒𝑔𝑙(𝑘) 

 

Computational ZK: for all (𝑥, 𝑤) ∈ 𝑅𝐿 

𝜎 ← 𝐾 1𝑘 , 𝜋 ← 𝑃 𝜎, 𝑥, 𝑤 ≈𝑐 𝑆(1𝑘 , 𝑥)  
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Last Tool: CCA-Secure Encryption 

Public-key encryption (𝐾𝑒𝑦𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐) 
 

 

 

 

 

 

 

• Adversary wins if 𝑐∗ not queries and 𝑏′ = 𝑏 

• Scheme is secure if ∀𝐴, Pr A 𝑤𝑖𝑛𝑠 ≲ 1
2  
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𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑘  

Challenger 𝑝𝑘, 𝑠𝑘  Adversary 𝑝𝑘  𝑐𝑖 

𝑚𝑖 = 𝐷𝑒𝑐𝑠𝑘(𝑐𝑖) 

𝑚0
∗ , 𝑚1

∗ 

𝑐∗ ← 𝐸𝑛𝑐𝑝𝑘 𝑚𝑏
∗  𝑏 ← {0,1} 

𝑏′ 



OUR PROTOCOL 
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Starting Point: Use Obfuscation 

• Start from any 𝑡-round secure MPC Π  

• Consider the next-message functions 

𝑁𝑒𝑥𝑡𝑀𝑠𝑔𝑥𝑖,𝑟𝑖 Π 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 𝑠𝑜 𝑓𝑎𝑟 = 

𝑛𝑒𝑥𝑡 Π 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑜𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 𝑖 
• With input, Π-randomness hard-wired in 
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Starting Point: Use Obfuscation 

• Players obfuscate, broadcast, their 

next-message functions 

• With input, Π-randomness hard-wired in 

• Each player obfuscates one function per round 
 

• Then everyone can locally evaluate the 

obfuscated functions to get the final output 
 

• But this is a one-round protocol, so it must 

leak the residual function 
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Add a Commitment Round 

• 1st round: commit to input, Π-randomness 

• Using CCA-secure encryption 

• 2nd round: obfuscate next-message functions 

• With input, Π-randomness hard-wired in 

• Also the 1st-round commitments hard-wired in 
 

• We want next-msg-functions to work only if 
transcript is consistent with commitments 

• This will prevent bad guys from using it with 
inputs other than ones committed in 1st round 
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Proofs of Consistency 

• 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝐜𝐨𝐦𝐦𝐬,𝝈,𝒓𝒊

′
′ 𝑡𝑟𝑎𝑛𝑠 so far, proofs = 

 

 

verify proofs that 𝑡𝑟𝑎𝑛𝑠 consistent with 𝑐𝑜𝑚𝑚𝑠, 𝜎
If any proof fails output ⊥                    

else output next Π msg, new proof
 

 

• New-proof generated with randomness 𝑟𝑖
′ 

• Proves that next-msg was generated by Π 
• on (𝑡𝑟𝑎𝑛𝑠, 𝑥𝑖 , 𝑟𝑖), for some 𝑥𝑖 , 𝑟𝑖 consistent with 𝑐𝑜𝑚𝑚𝑠, 𝜎 

 

• Each party obfuscates, broadcasts 
𝑁𝑒𝑥𝑡𝑀𝑠𝑔

𝑥𝑖,𝑟𝑖,𝑐𝑜𝑚𝑚𝑠,𝜎,𝑟𝑖
′

′  
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Is It Secure? 

• It would be if we had “ideal obfuscation” 

• “Easy to show” that this is secure when the 

𝑁𝑒𝑥𝑡𝑀𝑠𝑔′ functions are oracles 

• Essentially since Π+proofs is resettably-secure 

• Key observation: transcript fixed after 1st round 

• This assumes that Π can handle bad randomness 

• Alternatively we can include coin-tossing in the compiler 

• But we only have iO 

• So we must jump through a few more hoops 
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Dealing with iO 

• Change the obfuscated functions as follows: 

• 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝑐𝑜𝑚𝑚𝑠,𝜎,𝑟𝑖

′,𝑏,𝑧
′′ 𝑡𝑟𝑎𝑛𝑠 so far, proofs = 

 

verify proofs that 𝑡𝑟𝑎𝑛𝑠 consistent with 𝑐𝑜𝑚𝑚𝑠, 𝜎
If any proof fails output ⊥                                       

else  
 if b = 0 output next Π msg, new proof
if b = 1 output 𝑧                                           

 

 

• Each player obfuscates 𝑡 such functions 
• One for every communication round 

• All with same 𝑥𝑖 , 𝑟𝑖 , 𝑐𝑜𝑚𝑚𝑠, 𝜎, independent 𝑟𝑖
′’s 

• All with 𝑏 = 0, 𝑧 = 0ℓ 
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The Full* Compiler 

• CRS: 𝑝𝑘 of CCA-PKE, 𝜎 of NIZK 

• 1st round: 𝑃𝑖(𝑥𝑖) chooses 𝑟𝑖, broadcasts 

𝑐𝑖 = 𝐸𝑝𝑘(𝑖, 𝑥𝑖), 𝑑𝑖 = 𝐸𝑝𝑘(𝑖, 𝑟𝑖) 

• 2nd round: 𝑃𝑖 chooses 𝑟𝑖,1
′ …𝑟𝑖,𝑡

′ ’s, broadcasts 

𝐹𝑖,𝑗 = 𝑂𝐵𝐹 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝑐 ,𝑑 ,𝜎,𝑟𝑖,𝑗

′ ,0,0 
′′ ⋅  

• Local evaluations: For 𝑗 = 1,… , 𝑡, 𝑖 = 1, … , 𝑛, 

use 𝐹𝑖,𝑗(transcript so far, proofs so far) to get 

𝑃𝑖 ’s 𝑗’th message and a proof for it 
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Complexity, Functionality 

• 2 rounds after seeing CRS 

• Every 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′: 

• Checks at most 𝑡 ⋅ 𝑛 proofs 

• Computes one protocol message and proves it 

Has complexity at most 𝑝𝑜𝑙𝑦 𝑘 ⋅ 𝑇𝑖𝑚𝑒(Π) 

• OBF increases complexity by 𝑝𝑜𝑙𝑦 𝑘  factor 
 

• Correctness follows from correctness of Π  
and 𝑂𝐵𝐹 and completeness of proof system 
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Security 

Thm: The compiled protocol UC-securely 

realizes 𝑓 against malicious adversaries if 

•  Π securely realizes 𝑓 against semi-honest 

• And can tolerate bad randomness 

• Proof system is NIZK 

• Encryption is CCA secure 

• OBF is iO 
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Proof Of Security 

• Main idea in the proof: 

• Recall that 1st round fixes the Π-transcript 

• So these two circuits compute the same things: 

• The 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′ as constructed in the protocol (𝑏 = 0) 

• A 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′ function with the fixed transcript  (𝑏 = 1) 

• The simulator will use the latter 

• By iO, these are indistinguishable. 

• Formally: fix adversary 𝐴, we describe a 

simulator, prove its output indistinguishable 
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The Simulator (1) 

• CRS: 𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝑘 , (𝜎, 𝜏) ← 𝑆1 1𝑘  

• Good players’ ciphertexts: 
𝑐𝑖 ← 𝐸𝑛𝑐𝑝𝑘 𝑖, 0 , 𝑑𝑖 ← 𝐸𝑛𝑐𝑝𝑘(𝑖, 0) 

• Bad players’ ciphertexts: 
𝑐𝑖 , 𝑑𝑖 𝑖 bad ← 𝐴 𝑝𝑘, 𝜎, 𝑐𝑖 , 𝑑𝑖 𝑖 good  

• Decrypts bad players’ 𝑐𝑖 , 𝑑𝑖 
• Yields input, randomness for bad players 

• If invalid ciphertext, use default value 

• Sends inputs to trusted party, get outputs 
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The Simulator (2) 

• Runs Π-simulator on bad players’ 

(input, output, rand), gets a Π-transcript 

• Runs 𝑆2 𝜎, 𝜏,⋅  of NIZK, gets proofs for 

Π-messages of good players 

• Relative to their 𝑐𝑖 , 𝑑𝑖’s 

• Obfuscate 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′ for good players 

• Using 𝑥𝑖 = 0, 𝑟𝑖 = 0, random 𝑟𝑖,𝑗
′ ’s 

• Also using 𝑏 = 1, 𝑧 = (𝑚𝑠𝑔, 𝑝𝑟𝑜𝑜𝑓) 

• 𝑚𝑠𝑔 from simulated transcript, 𝑝𝑟𝑜𝑜𝑓 by NIZK sim. 
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Real/Ideal Indistinguishability 

• We prove indistinguishability by going 

through several hybrids 
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Adversary 

𝐴 

Honest Players Trusted Party 

𝑇 

Hybrid Manager 

Environment 

𝐻𝑀: anything that 

       doesn’t fit elsewhere 

This interface is 

indistinguishable 

Between hybrids 



Real/Ideal Indistinguishability 

•𝑯𝟏 is the real-world game 

• HM runs setup, trusted party is never used 
 

• Lemma: After 1st round, ∃ ≤ 1 Π-transcript for 

which ∃ proofs that would make 𝑁𝑒𝑥𝑡𝑀𝑠𝑔′′′ 
output anything other than ⊥ 

• Whp over the CRS, by statistical NIZK soundness 

• Moreover, given 𝑠𝑘 the HM can efficiently 

compute that transcript 

• Denote that transcript by 𝑡𝑟∗ 
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Real/Ideal Indistinguishability 

•𝑯𝟐: Obfuscate different functions 

• In 𝐻1 we had 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝑐 ,𝑑,𝜎,𝑟𝑖,𝑗

′ ,0,0 
′′′ (𝑡𝑟, pfs) 

• Now we have 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝟎,𝟎, 𝑐 ,𝑑,𝜎,𝑟𝑖,𝑗

′ ,𝟏,𝒛 
′′′ (𝑡𝑟, pfs) 

• 𝑧 = (𝑚𝑠𝑔𝑧, pf𝑧) contains the message from 𝑡𝑟∗, NIZK 

proof corresponding to 𝑡𝑟∗ wrt 𝜎, 𝑟𝑖,𝑗
′  

 

• By lemma from above: 

• Both functions output ⊥ under same conditions 

• If output ≠ ⊥ then 𝑡𝑟 = 𝑡𝑟∗, so both functions 

output (𝑚𝑠𝑔𝑧, pf𝑧) 
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Real/Ideal Indistinguishability 

•𝑯𝟐: Obfuscate different functions 

• In 𝐻1 we had 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝑥𝑖,𝑟𝑖,𝑐 ,𝑑,𝜎,𝑟𝑖,𝑗

′ ,0,0 
′′′ (𝑡𝑟, pfs) 

• Now we have 𝑁𝑒𝑥𝑡𝑀𝑠𝑔
𝟎,𝟎, 𝑐 ,𝑑,𝜎,𝑟𝑖,𝑗

′ ,𝟏,𝒛 
′′′ (𝑡𝑟, pfs) 

• 𝑧 = (𝑚𝑠𝑔𝑧, pf𝑧) contains the message from 𝑡𝑟∗, NIZK 

proof corresponding to 𝑡𝑟∗ wrt 𝜎, 𝑟𝑖,𝑗
′  

 

• They are functionally identical (whp over CRS) 

• By iO, their obfuscation is indistinguishable 

• So 𝐻1 ≈ 𝐻2 
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Real/Ideal Indistinguishability 

•𝑯𝟑: Simulated CRS & NIZKs 

• Indistinguishable by computational ZK 
 

•𝑯𝟒: Encrypt zeroes for honest players 

instead of inputs & randomness 

• Indistinguishable by security of the PKE 

• Need CCA-security to decrypt 𝐴’s ciphertexts 

• If adversary copies a good-player ciphertext, then 

treat it as invalid (since it encrypts the wrong index) 
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Real/Ideal Indistinguishability 

•𝑯𝟓: Use Π-simulator to generate 𝑡𝑟∗ 

• Send inputs, get outputs from trusted party 

• Indistinguishable by security of Π 

• This is the ideal world, HM is the simulator 
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Reducing Communication Complexity 

• The basic construction has communication 

complexity depends on the complexity of Π 

• Which is at least as large as that of 𝑓 

• To save communication, use multi-key HE 

• Players encrypt their input, broadcast ctxts 

• Use multi-key HE to evaluate 

• Apply 2nd round of our protocol to the HE 

decryption function 
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Questions? 
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