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Abstract

In this paper we address the problem of constructing commitment schemes
where the sender is bounded to polynomial time and the receiver may be all
powerful. Many known constructions for such commitment schemes are based
on the hardness of factoring large integers. However, these schemes typically
use integers of a special form and thus require a rather expensive initialization
procedure for establishing these special-form integers. In this paper we present
a scheme which is based on the hardness of factoring large integers but avoids
the need of a complex initialization procedure.

Key words: Blum-Integers, Commitment Schemes, Factoring, Permuta-
tion Pairs.

1 Introduction

In this paper we address the problem of constructing commitment schemes for (pos-
sibly long) messages. A commitment scheme is a protocol by which one party (called
the Sender) can deliver a message to another party (called the Receiver) without
revealing the contents of this message, and while being committed to this message.
Such a scheme emulates by means of a protocol the process of delivering the mes-
sage to the Receiver in a locked box: the Sender wants to prevent the Receiver from
knowing anything about the message in the box until such time in the future when
the Receiver is given the key to the box. The Receiver, on the other hand, wants

∗Preliminary Version appeared in Advances in Cryptography, Proceedings of Crypto ‘95. Lecture
Notes in Computer Science, volume 963, Springer-Verlag, 1995. Pages 84–96.
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to prevent the Sender from changing the message in the box after he has already
received it.

Commitment-schemes are very useful building blocks in the design of larger cryp-
tographic protocols. They are typically used as a mean of flipping fair coins between
two players, and also play a crucial part in some zero-knowledge proofs and in various
types of signature schemes.

Commitment Schemes. A commitment scheme is comprised of two phases. The
first phase simulates the delivery of the locked box. When this phase is completed, the
Receiver does not know the message yet, but the Sender can not change it any more.
The second phase simulates the delivery of the key. The Receiver can now see the
message and verify that it is indeed the message to which the Sender is committed.

Commitment Schemes with Computationally Unbounded Receiver. It
is easily seen that if both parties have unlimited computational power, they cannot
emulate the above process by just exchanging messages back and forth. Thus, at least
one of the two parties must be computationally bounded, to make digital implementa-
tion possible. Indeed, many cryptographic implementations of commitment schemes
have been suggested in the literature. In this work we concentrate on the case where
the Sender is computationally bounded, but the Receiver may be all powerful.

1.1 Previous Work

Many commitment schemes in the unbounded-receiver model are known based on
number-theoretic constructions. The first such scheme was suggested by Blum [4] in
the context of flipping coins over the phone. Blum described a commitment scheme
for one bit, which is based on the hardness of factoring large integers. Blum’s scheme
calls for one or two modular multiplications and a k-bit commitment string for every
bit which is being committed to (where k is the size of the composite modulus).
A similar construction with the same efficiency parameters was later described by
Brassard and Crépeau [1].

A more efficient construction, which is also based on the hardness of factoring
large integers, is implicit in the work of Goldwasser, Micali and Rivest [11]. Their
claw-free permutation-pairs enables one to commit to long messages using about the
same amount of local computation as in Blum’s scheme, but to send only a k-bit
commitment string, regardless of the length of the message being committed to. This
construction was described explicitly in [2] and was used since then in many other
works (e.g. [3, 5, 8]).

One common problem of all these constructions, however, is that they all rely
on composite numbers of a special form (i.e., product of two primes which are both
congruent to 3 mod 4). Thus they require a special initialization procedure in which
these special-form numbers are established. It should be noted that we can not let
any of the parties pick these numbers on its own, since the security of both parties
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depend on the proper choice of the numbers. In this paper we describe a method
which also uses the GMR construction but avoids the need for this initialization step.

Several other constructions in the literature are based on the difficulty of extract-
ing discrete-logarithms. In particular, [2] also show how to use claw-free permutation-
pairs which are based on the hardness of the discrete-log problem for commitment.
This scheme, however, requires one modular exponentiation per message bit. Peder-
sen [21] and Chaum, van-Heijst and Pfitzmann [5], described a scheme in which the
Sender can commit to a string of length k (where k is the size of the prime modulus)
by performing two modular exponentiations and sending a k-bit commitment string.

There were also a few implementations of commitment-schemes using more generic
complexity assumptions. A “folklore” scheme in the bounded receiver (and un-
bounded sender) model, uses a hard-core bit of any one-way permutation and requires
one application of the one-way permutation for each bit which is being committed to
(cf. [14]). In the same model, Naor [18] presented a commitment scheme which can
be implemented using any pseudo-random generator (or, equivalently, any one-way
function [17]). As opposed to the previous schemes, however, Naor’s scheme is inter-
active, and it requires 2 rounds of communication to commit to a string. The Sender
in this scheme generates an O(n)-bit pseudorandom string and sends an O(n)-bits
commitment string in order to commit to an n-bit message.

In the unbounded receiver model - Naor, Ostrovki, Venkatesan and Yung [20]
described a construction which is based on any one-way permutation. Their scheme
calls for 2k rounds of communication and one application of the one-way permutation
for each bit which is being committed to. Finally a commitment scheme which uses
collision intractable hash functions was first mentioned by Naor and Yung in [19],
and was later improved by Damg̊ard, Pedersen, Pfitzmann in [10] (and by Halevi
and Micali in [16]). This scheme calls for one application of the hash function to the
message and has a commitment string of size k (where k is the security parameter)
regardless of the message length.

1.2 Contributions of This Paper

In this paper we present a modification of the GMR-based commitment scheme.
The main difference between our scheme and the original GMR-based scheme is in
the system set-up. The GMR-based scheme (as well as most other factoring based
schemes) uses a Blum integer (i.e., a product of two primes, both congruent to 3 mod
4) as a system parameter. Therefore this scheme requires additional tools (such as
using zero-knowledge proofs) to ensure that the system parameter is indeed a Blum
integer. These additional tools are typically expensive, so the schemes become less
efficient.

We present a new technique which eliminates the need for such expensive initial-
ization steps. Instead, in our scheme we simply let the Receiver choose the system
parameter and send it to the Sender. Our scheme is unique in that the form of this
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system parameter does not effects the security of the Sender.

Efficiency of the scheme. The modified scheme almost maintains the efficiency
(of the commit and reveal phases) of the original scheme. In particular, the length
of the commitment string does not depend on the length of the message: It is linear
in the security parameter of the system. Also, each of the Commit and De-commit
phases consists of a single round of communication. In term of local computation,
the scheme requires one or two multiplications for each bit in the message (as in the
original scheme) and then some additional number of multiplications which depends
only on the security parameter of the system.

1.3 Organization of the Paper

The rest of this paper is organized as follows: In Sect. 2 we define the notion of a
commitment scheme. In Sect. 3 we recall the factoring-based scheme which uses the
claw-free permutation pairs due to [11] and then show how it can be modified to allow
simple initialization.

2 Preliminaries

2.1 Commitment schemes

In this paper we do not try to give the most general definition possible for a commit-
ment scheme. Instead, we only define “non-interactive” schemes, in which each phase
(except, perhaps, initialization phase) consists of a single message, as these are the
ones that we consider in the paper.

The Syntactic Structure of a Commitment Scheme. A commitment
scheme is a protocol of three phases (Initialization, Commit and De-commit phases)
between two parties (the Sender and the Receiver). Both parties share a common
input, which is the security parameter of the system encoded in unary (we denote
this by 1k). For the later two phases, the Sender also has another input m, which
is the message string to which she wants to commit herself. When used inside some
other protocol, the parties may also have other inputs which represent their history
at the point where the commitment scheme is being invoked.

The parties execute the Initialization phase first, and then the other two phases.
It is possible to execute the initialization phase only once, and then to execute the
Commit and De-commit phases many times (for many messages). In each of these
times, the parties execute first the Commit phase, and at some later time they execute
the De-commit phase. Typically, when used in another protocol, there will be some
other parts of that protocol between the Commit and the De-commit phases.

After the initialization phase, both parties have a string p (which denotes the
system parameters). During the Commit phase the Sender sends to the Receiver a
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commit-string c and during the De-commit phase the Sender sends to the Receiver a
de-commit string d. From p, c and d the Receiver computes a message m and then
checks that m is consistent with p, c and d.

Syntactically, we view a commitment scheme as a collection of the following (prob-
abilistic polynomial-time) algorithms:

• A probabilistic Initialize protocol, in which the parties - on input 1k - compute
the system parameters p. We denote the Sender’s algorithm during this phase
by InitS and the Reciever’s algorithm by InitR.

• A probabilistic algorithm Send which on input (p,m) outputs a pair (c, d),
where c is the commit string and d is the de-commit string.

• A (possibly deterministic) algorithm Receive which on input (p, c, d) outputs
either a string m or the special symbol ⊥ (meaning that the strings c, d are not
the commit/de-commit strings for any message).

The Semantics of a Commitment Scheme. The semantics of a commitment
scheme should ensure that after the Commit phase the Receiver does not know any-
thing about the message yet, but the Sender can not change it anymore, and that
after the De-commit phase the Receiver is able to learn the message.

The definition of what it means for the Receiver “not to know anything about m”,
and for the Sender “not to be able to alter m” depends on the computational power
of the parties. In the context of this paper, the Sender is bounded to probabilistic
polynomial-time and the Receiver has unbounded computational power.

Definition 1: We say that the algorithms Initialize, Send, Receive comprise a
commitment scheme for unbounded receiver is they satisfy the following requirements:

Viability: If both the Sender and the Receiver follow their parts in the protocol,
then the message m which the Receiver computes from (p, c, d) after the De-
commit phase is equal to the Sender’s input message. That is,

∀k ∈ N ,m ∈ {0, 1}∗,
if p = Initialize(1k) and (c, d) = Send(p,m) then Receive(p, c, d) = m

Secrecy: Let Init∗R be any algorithm which is employed by the Receiver during the
Initialization phase. We denote by pS the output of the interaction Init∗R(1k)↔
InitS(1k) from the Sender’s point-of-view. Notice that pS is a random variable.

For any possible value of pS and any string m ∈ {0, 1}∗, denote by CpS(m)
the distribution over the commit-strings for m using the system parameters pS.
That is, CpS(m) is the distribution on the first coordinate of the pair which is
obtained by running the algorithm Send(pS,m). Using these notations, we can
write the secrecy requirement as follows:
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For any algorithm Init∗R and any value of pS which has a non-zero probability,
and for any two messages m1,m2, the distributions CpS(m1) and CpS(m2) are
identical, CpS(m1) ≡ CpS(m2).

Non-Ambiguity: The Non-ambiguity requirement asserts that it is infeasible for
the Sender to “open a commitment in two different ways”. We formalized this
requirement by considering any probabilistic polynomial time algorithms which
are employed by the Sender during the Initialization and the Commit phases,
denoted Init∗S and Send∗ respectively.

We consider the probability that the Send∗ algorithm generates a commitment-
string c and two de-commit strings d, d′, and the Receiver accepts both (c, d) and
(c, d′) as valid commit/de-commit pairs, and computes two different messages
from these pairs. The Non-ambiguity requirement is that this probability must
be negligible for any probabilistic polynomial time algorithms Init∗S and Send∗.

Formally, we denote by (pR, pS∗)← [InitR(1k)↔ Init∗S(1k)] the event in which,
the Receiver’s output from the interaction InitR(1k)↔ Init∗S(1k) is pR and the
Sender’s output is pS∗ .

We require that for any probabilistic polynomial time algorithms Init∗S,Send∗
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(pR, pS∗)← [InitR(1k)↔ Init∗S(1k)];
(c, d, d′)← Send∗(pS∗);
Receive(pR, c, d) 6= Receive(pR, c, d

′)
Receive(pR, c, d),Receive(pR, c, d

′) 6=⊥


 = negligible(k)

where the probability is taken over the random coin-tosses of the algorithms
Init∗S, InitR, Send∗ and Receive (whichever of them happens to be proba-
bilistic).

See Appendix A for a discussion on a few choices which we made in the above
definition.

2.2 The Factorization Conjecture

The assumption we need for our scheme is that factoring a special type of integers is
infeasible. The type of integers we are interested at is composites which are product
of two primes of the same size, one of which is equal to 3 mod 8 and the other is
equal to 7 mod 8.

Formally, for any integer k denote by PRIMESk3 the set of all k-bit primes which
are congruent to 3 mod 8, and by PRIMESk7 the set of all k-bit primes which are
congruent to 7 mod 8. Then we have

The Factorization Conjecture. For any probabilistic polynomial time algorithm
A,

Pr
[
p ∈ PRIMESk3 , q ∈ PRIMESk7 , N ← pq : A(N) = (p, q)

]
= negligible(k)
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where the probability is taken over the choices of p, q (which are uniformly selected
in PRIMESk3 , PRIMESk7 respectively) and over the coin-tosses of the algorithm A.

3 A Factoring-Based Implementation

3.1 The Goldwasser-Micali-Rivest Claw-Free Permutation Pairs

Let p and q be two primes such that p = 3 (mod 8), q = 7 (mod 8), and denote

N
def
= p · q. We start by defining two functions

fN,0(x)
def
= x2 (mod N) and fN,1(x)

def
= 4x2 (mod N)

Then, for any string s = b1b2 · · · bn we define fN,s(x)
def
= fN,b1(· · · fN,bn(x) · · ·). It is

easy to see that both fN,0 and fN,1 are permutations over the quadratic residues mod
N , which implies that for any s the function fN,s is also a permutations over the
quadratic residues mod N .

3.2 Using the GMR Construction for Commitment

The following is a simple commitment scheme that uses the GMR construction, which
is essentially the same as the scheme which is described in [2]. We assume that the
Sender and the Receiver uses some standard (prefix free) encoding function Enc so
that for no two messages m 6= m′ is Enc(m) a prefix of Enc(m′). For example,
Enc(b1b2 · · · bn) = b10b20 · · · bn1 has this property (though there are better prefix-free
encoding schemes).

Initialization: The Sender and the Receiver “choose at random” a composite N
with k bits of the above form. We discuss this phase in more details below.

Commit phase: Given a message m, the Sender computes s = Enc(m). Then she
picks a random element x ∈ Z∗N and sends y = fN,s(x

2) to the Receiver.

Reveal Phase: The Sender sends both m and x to the Receiver. the Receiver com-
putes s = Enc(m) and verifies that y = fN,s(x

2).

It is obvious from the description that this scheme satisfies the viability requirement
in Definition 1. To show that it also satisfies the other two conditions we prove two
claims:

Claim 3.1: The scheme above satisfies the Secrecy requirement in Definition 1 if
the composite N is a product of two primes which are both congruent to 3 mod 4.
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Proof: If N is indeed of that form, then both fN,1 and fN,0 are permutations, and
therefore so is fN,s for any s. Thus, for every y (which is a quadratic residue mod N)
and every s there exists exactly one quadratic residue mod N , denoted x, such that
y = fN,s(x). This means that for any s and any possible N , we have for all y ∈ Z∗N

Pr
x∈Z∗N

[fs,N(x2) = y] =

{
4

ϕ(N)
if y is a quadratic-residue mod N

0 otherwise

which is independent of s, as needed.

Claim 3.2: If the Factorization Conjecture holds, then the above scheme satisfies
the Non-ambiguity requirement in Definition 1, provided that the composite N is
chosen by a trusted third party.

This claim was proven in [11] (Theorem 1) and a generalization of it was proven in
[6] (Theorem 2.8). The main idea in the proof is that given two quadratic residues
x, y mod N and two strings s 6= s′ (none of which is a prefix of the other) so that
fN,s(x) = fN,s′(y), we can find two quadratic residues u, v mod N for which u2 = 4v2

mod N . Since N is chosen so that ±2 are not quadratic residues mod N , it can be
shown that gcd(u± 2v,N) is the prime factorization of N .

3.3 Efficiency of the Scheme

The amount of communication in the commit phase is independent of the message
m. the Sender always send exactly k bits to the Receiver (where k is the number of
bits in N). In the reveal phase, the Sender sends the message m and k more bits.

In terms of running time, to compute the commitment string the Sender needs
to perform one or two modular multiplications for every bit in s (which presumably
has about the same length as m). Using a construction similar to [6], we can use
larger families of permutations to reduce the number of multiplication to one or two
per byte of s. The idea is to use 256 different permutations rather than just two,
and to view m as a sequence of bytes, where each byte specifies one permutation. Of
course, for every r we can use the same idea to get one or two multiplications per
r bits of s using 2r permutations. Clearly, we pay for this saving in running-time
by having to keep many more bits to describe these larger families of permutations,
and by having to choose one of these families in the initialization phase. Moreover,
the security properties of this scheme are weaker that those of the original scheme.
In particular, in the original scheme we could convert an algorithm with probability
ε of braking the Non-ambiguity requirement into an algorithm which factors n with
the same probability. In the new scheme, instead, the success probability of the
factorization algorithm will only be something like ε

2r−1 .
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3.4 Implementing the Initialization Phase

The main problem with the above scheme is the implementation of the initialization
phase. Clearly, it is important to choose the composite number N in such a way that
the Sender will not be able to factor it easily. Notice that it doesn’t matter whether
the Receiver knows the factorization of N or not.

One idea is to let the Receiver choose N in the appropriate way and send it to the
Sender. But if the Sender doesn’t know the factorization of N , how can she verify
that N it is really a product of two primes which are 3 mod 4 (which is the property
that makes the functions fN,0, fN,1 permutations) ?

At first glance this may not look like a real problem. After all, the Sender can
choose the starting point x at random, so she may be able to hide m from the
Receiver even if these functions are not permutations. Unfortunately, this is not the
case. Consider for example N = 5 and a message of one bit b. It is easy to see that
for any element x ∈ Z∗5 we have f5,0(x2) = 1 and f5,1(x2) = 4. Thus the Receiver can
recover the message from the commitment string.

Intuitively, we can solve this problem by having the Receiver choose N and then
prove (by means of a zero-knowledge proof) to the Sender that it is of the right form.
Notice, however, that this will not satisfy our (stringent) definition of secrecy, since
there is always a non-zero probability that the Sender will accept a composite N
which is not of the right form. More importantly, this zero-knowledge proof can be
expensive in terms of both running time and communication. It will therefore be
desirable to have a system where choosing a “bad N” does not help the Receiver
getting any information about m. We present such a system below.

3.5 A Modification of the GMR-Based Scheme

The only difference between the following scheme and the previous one is that after
computing y = fN,s(x

2), the Sender squares y for k more times (where k is the number
of bits in N) and sends the result to the Receiver. Note that this is equivalent to
computing fN,0ks(x

2). The new scheme is:

Initialization: The Receiver picks at random a k-bit composite number N which is
a product of two large primes, one congruent to 3 mod 8 and the other congruent
to 7 mod 8. The Receiver sends N to the Sender, who just verifies that N is of
the right length.

Commit phase: Given a message m, the Sender computes s = Enc(m). Then she
picks a random element x ∈ Z∗N and sends y = fN,0ks(x

2) to the Receiver.

Reveal Phase: The Sender sends both m and x to the Receiver. The Receiver
computes s = Enc(m) and verifies that y = fN,0ks(x

2).

It is easy to see that if the Receiver picks N according to the protocol then it is still
infeasible for the Sender to find two different messages with the same commitment
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string (if factoring is hard). The harder part is to show that even if the Receiver tries
to “cheat” by picking a “bad” N , he still does not get any information about m from
the commitment string.

3.6 Proof of Secrecy for the Modified Scheme

We need to show that the modified scheme satisfies the secrecy requirement for any
integer N (even if N is not “of the right form”). To do that we prove the following
lemma

Lemma 3.3: Let N be any integer and denote the number of bits in N by k, and
let s1, s2 be any two strings. Then, for any element y ∈ Z∗n we have

Pr
x∈Z∗N

[(
fN,s1(x2)

)2k

= y
]

= Pr
x∈Z∗N

[(
fN,s2(x2)

)2k

= y
]

Below we give an elegant proof for Lemma 3.3 which is due to Damg̊ard [9]. A longer
proof for the same claim can be found in the preliminary version of this paper [15].
For this proof, we need to review a few facts. The first fact about the function fs,N(·)
was first observed by Goldreich:

Fact 3.4: [12] For any integer N , any string s and any element x ∈ Z∗N , fs,N(x) =

22ŝ · x2|s| , where ŝ is the integer whose binary representation is s.

We now need some facts about the structure of the group Z∗N . We start with a
definition and a few notations:

Definition 2: Let N be an integer, N > 1, and let x be an element in Z∗N . The order
of x, denoted ord(x), is the smallest positive integer e so that xe = 1 (mod N). We
denote by ON the subset containing all the elements of odd order in Z∗N . That is,

ON
def
= {x ∈ Z∗N : ord(x) is odd}

Fact 3.5: Let N be an integer, N > 1. Then ON is a subgroup of Z∗N .

Proof: ON is closed under multiplication since for any x, y ∈ Z∗N , ord(xy) must
divide ord(x) · ord(y). Since ord(x), ord(y) are both odd, then so is ord(x) · ord(y)
and thus so is ord(xy).

Fact 3.6: For any integer N , squaring mod N is a permutation over ON .

Proof: It is sufficient to show that for every x ∈ ON there exists y ∈ ON so that
x = y2 (mod N). So let x ∈ ON and denote the order of x by 2r + 1. Then if we
set y = xr+1 (mod N) we have y2 = x2r+2 = x · x2r+1 = x (mod N). Finally, by
Fact 3.5, y = xr+1 ∈ ON .
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Fact 3.7: For any integer N , any element x ∈ Z∗N and any ` ≥ |N |, x2` ∈ ON .

Proof: Denote ord(x) = 2i · r where r is an odd integer. Since ord(x) < ϕ(N) <
2|N | then i < |N | ≤ `. Moreover, we have ord(x2i) = r, so x2i ∈ ON , and since ON is
closed under squaring (Fact 3.5), then also x2` = (x2i)2`−i ∈ ON .

Fact 3.8: Let N be any integer. If we uniformly select an element x ∈ Z∗N and
square it |N | times or more mod N , then we get a uniformly distributed element in
ON . Namely, for any ` ≥ |N | and o ∈ ON

Pr
x∈Z∗N

[
x2` = o (mod N)

]
=

1

|ON |
Proof: Denote the prime factorization of N by N = q1 ·q2 · · · qm, where the qi’s are
powers of distinct primes (qi = peii for some prime pi and positive integer ei). Recall
that Z∗N is homomorphic to Z∗q1 × Z∗q2 · · · × Z∗qm , and this homomorphism induces a
homomorphism between ON and Oq1 × Oq2 · · · × Oqm . Thus, it is sufficient to show
that for each of the qi’s, uniformly selecting an element x ∈ Z∗qi and squaring it ` times
yields a uniformly distributed element in Oqi . We distinguish between two “types” of
qi’s:

Type 1: qi is a power of two. In this case the only element of odd order in Z∗qi is 1,
so |Oqi| = 1. Indeed, since ` ≥ |N | ≥ |qi|, then by Fact 3.7 we have

Pr
x∈Z∗qi

[
x2` = 1 (mod qi)

]
= Pr

x∈Z∗qi

[
x2` ∈ Oqi (mod qi)

]
= 1

Type 2: qi is a power of an odd prime. In this case Z∗qi is a cyclic group. So let g
be a generator in this group and we denote ord(g) = ϕ(qi) = r · 2t where r is an odd
integer and t ≤ |qi|. Also, denote h = g2t (mod qi). Then the odd-order elements
in Z∗qi are h, h2, h3, · · · , hr = 1, so we have |Oqi| = r.

Let now o = he be some element of Oqi , and we compute the probability that
x2t = o (mod qi) when x is chosen at random in Z∗qi . Picking a random element in
Z∗qi is equivalent to picking an exponent at random e′ ∈ {1, 2, · · · r2t} and computing

x = ge
′

(mod qi). Moreover, we have

x2t = (ge
′
)2t = he

′
= he

′ mod r (mod qi)

So we have x2t = o (mod qi) if and only if e = e′ (mod r). Thus we get

Pr
x∈Z∗qi

[
x2t = o (mod qi)

]
= Pr

e′∈{1,···,r2t}
[e′ = e (mod r)] =

1

r
=

1

|Oqi|

Moreover, since (by Fact 3.6) squaring is a permutation over Oqi then also for every

` ≥ |qi| ≥ t we have Prx∈Z∗qi

[
x2` = o (mod qi)

]
= 1
|Oqi |

.
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Proof: (of Lemma 3.3) Armed with Facts 3.4-3.8, we can now prove Lemma 3.3.
Let s be any string, let N be any integer, let x be a random element in Z∗N and denote

k = |N |, z = (fs,N(x2))
2k

. Then from Fact 3.4 we have

z =
(
fs,N(x2)

)2k

=
(
22ŝ(x2)2|s|

)2k

=
(
22ŝ
)2k · x2(|s|+k+1)

From Fact 3.7 we have that
(
22ŝ
)2k ∈ ON , and from Fact 3.8 we have that x2|s|+k+1

is a uniformly distributed element in ON (which is independent of s). Thus, z is a
uniformly distributed element in ON , regardless of s. This concludes the proof of
Lemma 3.3.
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A Remarks on the Definition of Commitment-Schemes

Recall our definition of (non-interactive) commitment schemes. We say that the algo-
rithms Initialize, Send, Receive comprise a commitment scheme for unbounded
receiver is they satisfy the following requirements:

Viability: ∀k ∈ N ,m ∈ {0, 1}∗,
if p = Initialize(1k) and (c, d) = Send(p,m) then Receive(p, c, d) = m

Secrecy: For any algorithm Init∗R, any value of the system parameter pS which
has a non-zero probability, and for any two messages m1,m2, the distributions
CpS(m1) and CpS(m2) are identical.

Non-Ambiguity: For any probabilistic polynomial time algorithms Init∗S,Send∗

Pr




(pR, pS∗)← [InitR(1k)↔ Init∗S(1k)];
(c, d, d′)← Send∗(pS∗);
Receive(pR, c, d) 6= Receive(pR, c, d

′)
Receive(pR, c, d),Receive(pR, c, d

′) 6=⊥


 = negligible(k)

where the probability is taken over the random coin-tosses of the algorithms
Init∗S, InitR, Send∗ and Receive (whichever of them happens to be proba-
bilistic).

A few points about this definition are worth noting

Stringent Secrecy. The Secrecy requirement above is rather stringent. First, we
require that the distributions CpS(m1), CpS(m2) be identical (rather than, say, very
close). Moreover, we require that this happens for every possible value of pS, and even
when the Init∗R algorithm is not restricted in terms of computational complexity.
Most other schemes in the literature do not achieve this requirement for all possible
values of pS, and instead only satisfy it with high probability over the executions of
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INITS. Nonetheless, the scheme which we presented in this paper satisfies the above
requirement.

Auxiliary Inputs. The definition as it is written above does not take into account
auxiliary inputs which may be available to the parties during the scheme. When a
commitment scheme is used inside a larger protocol the parties may have auxiliary
inputs from this higher level protocol, so we should require that the scheme remains
secure in the presence of such auxiliary inputs. It is not hard to see that this does
not affect the Secrecy requirement, since the commitment string is statistically in-
dependent of the message which is being committed to, regardless of any auxilary
inputs.

As for the Non-ambiguity requirement, there are two ways in which the auxiliary
inputs can be incorporated into the definition. One way is to augment the requirement
so that it holds for any auxiliary input z of length polynomial in k (which is given
as an extra input to the Init∗,Send∗ algorithms). This, however, has the effect of
making Init∗,Send∗ non-uniform. Therefore, any computational assumption that
we make must hold in the non-uniform model. In particular, in the scheme which we
described in this work we must assume that no polynomial-size circuit can find the
prime factorization of Blum-integers.

If we want to stay in the uniform model, we must somehow restrict the type of
auxiliary inputs which we allow, to those which can be generated by probabilistic
polynomial-time machines. Informally, this means that although some auxiliary in-
puts may help a cheating Sender to open its commitment in two different ways, it is
infeasible for any probabilistic polynomial-time machine to find these inputs. We do
not formalize this intuition here. The reader is referred to [13] for a formal treatment
of these problems (for the case of encryption and Zero-Knowledge Proofs).

Generation of De-commit Strings. The Non-ambiguity condition in our
definition may seem weak in that it requires that the de-commit strings d, d′ be
generated at the same time as the commit string c. To clarify this point, recall that
when a commitment scheme is used inside a higher-level protocol, there are typically
some other parts of this higher-level protocol between the Commit and the De-commit
phases. Therefore, it is conceivable that the Sender will have more information when
it sends the de-commit string than it had when it generated the commit string. In
principle, the definition should require that the Sender is unable to generate d, d′ even
after getting all this extra information.

It is worth stressing that we can not simply treat this extra information as an
auxiliary input, as it may depend on the behavior of the Receiver between the Commit
and De-commit phases, which in turn may depend on the commitment string c and
the system parameters pR. Note that as long as the legitimate Receiver is probabilistic
polynomial-time, anything it sends which only depends on c can be simulated by the
Sender, and therefore can not help the Sender in cheating. However, the Receiver
also knows pR (which may be hidden from the Sender), and if it sends messages which
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depends on pR then these messages may help the Sender.
There are two ways in which this issue can be dealt with in the definition. One

way is to leave the definition as is, and require that in any protocol which uses the
commitment scheme, the Receiver does not use its knowledge of pR before the De-
commit phase. This requirement may make sense in some cases since pR can be
thought of as an internal parameter of the commitment scheme which should not be
used by the higher-level protocol. However, there are cases where this requirement
can not be met (specifically when we use the same value of pR for several executions
of the Commit/De-commit phases).

Alternatively, we could strengthen the Non-ambiguity requirement so that is holds
even when pR is given as input to the Send∗ algorithm. We note that the scheme
we presented in this work satisfies this strengthened requirements (as do all other
schemes in the literature).
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