

Shai Halevi φ L.a
August 2013

I want to delegate processing of my data,
without giving away access to it.

Client Server/Cloud

(Input: x) (Function: f)

άL ǿŀƴǘ ǘƻ ŘŜƭŜƎŀǘŜ ǘƘŜ ŎƻƳǇǳǘŀǘƛƻƴ ǘƻ ǘƘŜ ŎƭƻǳŘέ
άL ǿŀƴǘ ǘƻ ŘŜƭŜƎŀǘŜ ǘƘŜ ŎƻƳǇǳǘŀǘƛƻƴ ǘƻ ǘƘŜ ŎƭƻǳŘΣ

ōǳǘ ǘƘŜ ŎƭƻǳŘ ǎƘƻǳƭŘƴΩǘ ǎŜŜ Ƴȅ ƛƴǇǳǘέ

Enc[f(x)]

Enc(x) f

Example: RSA_encrypt(e,N)(x) = xe mod N

x1
e x x2

e = (x1 x x2)
 e mod N

ά{ƻƳŜǿƘŀǘ HomomorphicέΥ Ŏŀƴ ŎƻƳǇǳǘŜ ǎƻƳŜ
functions on encrypted data, but not all

Plaintext space P Ciphertext space C

x1 x2
ci ă Enc(xi) c1 c2

* #

y d

y ă Dec(d)

ÅRivest-Adelman-Dertouzos 1978

Encryption for which we can compute arbitrary
functions on the encrypted data

Enc(f(x))

Enc(x) Eval f

An encryption scheme: (KeyGen, Enc, Dec)

Plaintext-space = {0,1}

(pk,sk) ăKeyGen($), căEncpk(b), băDecsk(c)

Semantic security ώDaΩупϐΥ
 (pk, Encpk(0)) º (pk, Encpk(1))

º means indistinguishable by efficient algorithms

6

H = {KeyGen, Enc, Dec, Eval}
 c* ă Evalpk(f, c)

Homomorphic: Decsk(Evalpk(f, Encpk(x))) = f(x)

c* Ƴŀȅ ƴƻǘ ƭƻƻƪ ƭƛƪŜ ŀ άŦǊŜǎƘέ ciphertext

As long as it decrypts to f(x)

Compact: Decrypting c* easier than computing f

Otherwise we could use Evalpk (f, c)=(f, c) and
Decsk(f, c) = f(Decsk(c))

Technically, |c* | independent of the complexity of f

7

c*

CƛǊǎǘ ǇƭŀǳǎƛōƭŜ ŎŀƴŘƛŘŀǘŜ ƛƴ ώDŜƴΩлфϐ

Security from hard problems in ideal lattices

Polynomially slower than computing in the clear

Big polynomial though

Many advances since

Other hardness assumptions

LWE, RLWE, NTRU, approximate-GCD

More efficient

hǘƘŜǊ ά!ŘǾŀƴŎŜŘ ǇǊƻǇŜǊǘƛŜǎέ

Multi-key, Identity-ōŀǎŜŘΣ Χ
8

Regev-like somewhat-homomorphic encryption

!ŘŘƛƴƎ ƘƻƳƻƳƻǊǇƘƛǎƳ ǘƻ ώwŜƎΩлрϐ ŎǊȅǇǘƻǎȅǎǘŜƳ

Security based on LWE, Ring-LWE

.ŀǎŜŘ ƻƴ ώ.±ΩммΣ .D±ΩмнΣ .Ωмнϐ

.ƻƻǘǎǘǊŀǇǇƛƴƎ ǘƻ ƎŜǘ CI9 ώDŜƴΩлфϐ

Packed ciphertexts for efficiency

.ŀǎŜŘ ƻƴ ώ{±ΩммΣ .D±ΩмнΣ DI{Ωмнϐ

Not in this talk: a new LWE-based scheme

[Gentry-Sahai-Waters CRYPTO 2013]

9

Many equivalent forms, this is one of them:

Parameters: ή (modulus), ὲ (dimension)

Secret: a random short vector ▼ɴ ὤ

Input: many pairs ╪░ȟὦ
╪ᶰὤ is random, ὦ ▼ȟ╪ Ὡ άέὨ ή
Ὡ is short

Goal: find the secret ▼

Or distinguish ╪ȟὦ from random in ὤ

ώwŜƎŜǾΩлрΣ tŜƛƪŜǊǘΩлфϐΥ As hard as some worst-case
lattice problems in dim n (for certain range of params)

The shared-key variant (enough for us)

Secret key: vector ▼ᴂ

Encrypt„ᶰπȟρ

╬ ╪ȟὦ s.t. ὦ „ ▼ᴂȟ╪ Ὡ άέὨ ή

Convenient to write ▼ȟ╬ „ Ὡ άέὨ ή

Decrypt(▼ȟ╬)

Output 0 if |▼ȟ╬ mod q| ήȾτ, else output 1

Correct decryption as long as error ήȾτ

Security: If LWE is hard, cipehrtext is pseudorandom

, denote ▼ ▼ᴂȟ

If ▼ȟ╬ „ (mod q) then

 ▼ȟ╬ ╬ „ṥ„ (mod q)

Error doubles on addition

Correct decryption as long as the error ήȾτ

12

Step 1: Tensor Product

If ▼ȟ╬ „ (mod q) and s is small (ȿ▼ȿḺή)

then ▼ṧ▼ȟ╬ṧ╬ „„ (mod ή)

Error has extra additive terms of size ίẗήḺή

So ╬z ὶέόὲὨ╬ṧ╬ Ⱦ encrypts „„

relative to secret key ▼z ▼ṧ▼

Rounding adds another small additive error

But the dimension squares on multiply

Step 2: Dimension Reduction

tǳōƭƛǎƘ άƪŜȅ-ǎǿƛǘŎƘƛƴƎ ƎŀŘƎŜǘέ ǘƻ ranslate
╬z wrt ▼z Č ╬ wrt ▼

Essentially an encryption of ▼ᶻ under ▼

ὲ ὲ rational matrix W s.t. ▼╣ ὡ ▼ᶻάέὨ ή

Given ╬ᶻ, compute ἫN 2ÏÕÎÄὡ ╬ᶻ άέὨ ή

▼ȟ╬ ▼╣ ὡ ╬ᶻ ▼ᶻȟ╬ᶻ „ άέὨ ή

Some extra work to keep error from growing too much

Still secure under reasonable hardness assumptions

Error doubles on addition, grows by poly(n)
factor on multiplication (e.g., ὲ factor)

When computing a depth-Ὠ circuit we have
|output -error| |input -error| ẗὲ

Setting parameters:

Start from |input-error| ὲ (say)

Set ή τὲ ẗὲ τὲ

Set the dimension large enough to get security

| output-error| ήȾτ, so no decryption errors

15

16

C(x1, x2 ,�«, xt)

x1

�«

x2

xt

C

So far, circuits of pre-determined depth

