
 

Shai Halevi φ L.a 
August 2013 



I want to delegate processing of my data,  
without giving away access to it. 



Client Server/Cloud 

(Input: x) (Function: f) 

άL ǿŀƴǘ ǘƻ ŘŜƭŜƎŀǘŜ ǘƘŜ ŎƻƳǇǳǘŀǘƛƻƴ ǘƻ ǘƘŜ ŎƭƻǳŘέ 
άL ǿŀƴǘ ǘƻ ŘŜƭŜƎŀǘŜ ǘƘŜ ŎƻƳǇǳǘŀǘƛƻƴ ǘƻ ǘƘŜ ŎƭƻǳŘΣ  

ōǳǘ ǘƘŜ ŎƭƻǳŘ ǎƘƻǳƭŘƴΩǘ ǎŜŜ Ƴȅ ƛƴǇǳǘέ 

Enc[f(x)] 

Enc(x)  f 



Example: RSA_encrypt(e,N)(x) = xe mod N  

x1
e x x2

e  =  (x1 x x2)
 e mod N  

ά{ƻƳŜǿƘŀǘ HomomorphicέΥ  Ŏŀƴ ŎƻƳǇǳǘŜ ǎƻƳŜ 
functions on encrypted data, but not all 

Plaintext space P Ciphertext space C 

x1           x2 
ci ă Enc(xi) c1           c2 

* # 

y d 

y ă Dec(d) 

ÅRivest-Adelman-Dertouzos 1978 



Encryption for which we can compute arbitrary 
functions on the encrypted data 

Enc(f(x)) 

Enc(x)  Eval f 



An encryption scheme: (KeyGen, Enc, Dec) 

Plaintext-space = {0,1} 

(pk,sk) ăKeyGen($),  căEncpk(b),  băDecsk(c) 

Semantic security ώDaΩупϐΥ 
     (pk, Encpk(0))  º  (pk, Encpk(1)) 

º means indistinguishable by efficient algorithms 
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H = {KeyGen, Enc, Dec, Eval} 
  c*  ă Evalpk(f, c) 

Homomorphic: Decsk(Evalpk( f, Encpk(x))) = f(x) 

c*  Ƴŀȅ ƴƻǘ ƭƻƻƪ ƭƛƪŜ ŀ άŦǊŜǎƘέ ciphertext 

As long as it decrypts to f(x) 

Compact: Decrypting c*  easier than computing f 

Otherwise we could use Evalpk (f, c)=(f, c) and 
Decsk(f, c) = f(Decsk(c)) 

Technically, |c* | independent of the complexity of f 
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c*  



CƛǊǎǘ ǇƭŀǳǎƛōƭŜ ŎŀƴŘƛŘŀǘŜ ƛƴ ώDŜƴΩлфϐ 

Security from hard problems in ideal lattices 

Polynomially slower than computing in the clear 

Big polynomial though 

Many advances since 

Other hardness assumptions 

LWE, RLWE, NTRU, approximate-GCD 

More efficient 

hǘƘŜǊ ά!ŘǾŀƴŎŜŘ ǇǊƻǇŜǊǘƛŜǎέ 

Multi-key, Identity-ōŀǎŜŘΣ Χ 
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Regev-like somewhat-homomorphic encryption 

!ŘŘƛƴƎ ƘƻƳƻƳƻǊǇƘƛǎƳ ǘƻ ώwŜƎΩлрϐ ŎǊȅǇǘƻǎȅǎǘŜƳ 

Security based on LWE, Ring-LWE 

.ŀǎŜŘ ƻƴ ώ.±ΩммΣ .D±ΩмнΣ  .Ωмнϐ 

.ƻƻǘǎǘǊŀǇǇƛƴƎ ǘƻ ƎŜǘ CI9 ώDŜƴΩлфϐ 

Packed ciphertexts for efficiency 

.ŀǎŜŘ ƻƴ ώ{±ΩммΣ .D±ΩмнΣ DI{Ωмнϐ 

Not in this talk: a new LWE-based scheme 

[Gentry-Sahai-Waters CRYPTO 2013] 
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Many equivalent forms, this is one of them: 

Parameters: ή (modulus), ὲ (dimension) 

Secret: a random short vector ▼ɴ ὤ  

Input: many pairs ╪░ȟὦ  
╪ᶰὤ  is random, ὦ ▼ȟ╪ Ὡ άέὨ ή 
Ὡ is short 

Goal: find the secret ▼ 

Or distinguish ╪ȟὦ  from random in ὤ  

ώwŜƎŜǾΩлрΣ tŜƛƪŜǊǘΩлфϐΥ As hard as some worst-case  
lattice problems in dim n (for certain range of params)  



The shared-key variant (enough for us) 

Secret key: vector ▼ᴂ  

Encrypt„ᶰπȟρ  

╬ ╪ȟὦ s.t. ὦ „ ▼ᴂȟ╪ Ὡ άέὨ ή 

Convenient to write ▼ȟ╬ „ Ὡ άέὨ ή 

Decrypt(▼ȟ╬) 

Output 0 if |▼ȟ╬ mod q| ήȾτ, else output 1 

Correct decryption as long as error ήȾτ 

Security: If LWE is hard, cipehrtext is pseudorandom 

, denote ▼ ▼ᴂȟ  



If ▼ȟ╬ „  (mod q) then 

 ▼ȟ╬ ╬ „ṥ„  (mod q) 

Error doubles on addition 

Correct decryption as long as the error ήȾτ 
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Step 1: Tensor Product 

If ▼ȟ╬ „  (mod q) and s is small (ȿ▼ȿḺή) 

then ▼ṧ▼ȟ╬ṧ╬ „„  (mod ή) 

Error has extra additive terms of size ίẗήḺή 

So ╬z ὶέόὲὨ╬ṧ╬ Ⱦ  encrypts „„ 

relative to secret key ▼z ▼ṧ▼ 

Rounding adds another small additive error 

But the dimension squares on multiply 



Step 2: Dimension Reduction 

tǳōƭƛǎƘ άƪŜȅ-ǎǿƛǘŎƘƛƴƎ ƎŀŘƎŜǘέ ǘƻ ranslate 
╬z wrt ▼z Č ╬ wrt ▼ 

Essentially an encryption of ▼ᶻ under ▼ 

ὲ ὲ rational matrix W s.t. ▼╣ ὡ ▼ᶻάέὨ ή 

Given ╬ᶻ, compute ἫN 2ÏÕÎÄὡ ╬ᶻ άέὨ ή 

▼ȟ╬ ▼╣ ὡ ╬ᶻ ▼ᶻȟ╬ᶻ „  άέὨ ή 

Some extra work to keep error from growing too much 

Still secure under reasonable hardness assumptions 



Error doubles on addition, grows by poly(n) 
factor on multiplication (e.g., ὲ factor) 

When computing a depth-Ὠ circuit we have 
|output -error|  |input -error| ẗὲ  

Setting parameters: 

Start from |input-error| ὲ  (say) 

Set ή τὲ ẗὲ τὲ  

Set the dimension large enough to get security 

| output-error| ήȾτ, so no decryption errors 
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C(x1, x2 ,�«, xt) 

x1 

�« 

x2 

xt 

C 

So far, circuits of pre-determined depth 


