
On i-Hop

Homomorphic

Encryption

Craig Gentry, Shai Halevi,
Vinod Vaikuntanathan

IBM Research

No relation to

2

This Work is About…

Connections between:

� Homomorphic encryption (HE)

� Secure function evaluation (SFE)

3

Secure Function Evaluation (SFE)

� Client Alice has data x

� Server Bob has function f

Alice wants to learn f(x)

1. Without telling Bob what x is

2. Bob may not want Alice to know f

3. Client Alice may also want server Bob
to do most of the work computing f(x)

4

Not necessarily c* { c

Homomorphic Encryption (HE)

� Alice encrypts data x

�sends to Bob c � Enc(x)

� Bob computes on encrypted data

�sets c* � Eval(f, c)

�c* is supposed to be an encryption of f(x)

�Hopefully it hides f (function-private scheme)

� Alice decrypts, recovers y � Dec(c*)

�Scheme is (fully) homomorphic if y = f(x)

5

A More Complex Setting

Alice sends encrypted email to Dora:

1. Mail goes first to SMTP server at BobsISP.com

� Bob’s ISP looks for “Make money”, if found
then it tags email as suspicious

2. Mail goes next to mailboxes.charlie.com
� More processing/tagging here

3. Dora’s mail client fetches email and decrypts it

Alice(x) Bob(f) Charlie(g) Dora(sk)

c0�Enc(x) c1�Eval(f,c0) c2�Eval(g,c1) y�Dec(c2)
y = g(f(x))

c0 c1 c2

6

A More Complex Setting

� c1 is not a fresh ciphertext

� May look completely different

� Can Charlie process it at all?

� What about security?

Alice(x) Bob(f) Charlie(g) Dora(sk)

c0�Enc(x) c1�Eval(f,c0) c2�Eval(g,c1) y�Dec(c2)
c0 c1 c2

2-Hop Homomorphic Encryption

7

Background

� Yao’s garbled circuits

�Two-move 1-of-2 Oblivious Transfer

� “Folklore” connection to HE

�Two-move SFE � function-private HE

8

1-of-2 Oblivious Transfer

� Alice has bit b, Bob has two Strings L0,L1

� Alice learns Lb, Bob learns nothing

� Alice sets (c,s)�OT1(b) sends c to Bob

� The c part in OT1(0), OT1(1) is indistinguishable

� Bob responds with r�OT2(c, L0, L1)

� ∃ Sim such that for any L0, L1, b, (c,s)�OT1(b)

OT2(c, L0, L1) { Sim(c, s, Lb)

� Alice recovers Lb�OT-out(s,r) honest-but-
curious

9

� Bob has f (fan-in-2 boolean circuit)

� Bob chooses two labels Lw,0,Lw,1 for every
wire w in the f-circuit

� A gadget for gate w = u(v:

�Know Lu,a and Lv,b � Learn Lw,a(b

{ EncLu,a(EncLv,b(Lw,c)) : c = a((((b }

� Collection of gadgets for all gates + mapping

output labels to 0/1 is the garbled circuit Γ(f)

Yao’s Garbled Circuits

Lw,1

Lu,0
Lu,1

Lv,0
Lv,1

Lw,0

((((

10

Yao’s Protocol

� Run 1-of-2-OT for each input wire w with input xj

� Alice(xj) v Bob(Lw,0, Lw,1), Alice learns Lw,xj

� Bob also sends to Alice the garbled circuit Γ(f)

� Alice knows one label on each input wire

� computes up the circuit

� learns one output label, maps it to 0/1

� Bob learns nothing

� Alice’s view simulatable knowing only f(x) and | f |

Assuming circuit topology

is “canonicalized”

11

Folklore: Yao’s protocol � HE

� Roughly:

� Alice’s message c�OT1(x) is Enc(x)

� Bob’s reply [OT2(c, labels), Γ(f)] is Eval(f,c)

� Not quite public-key encryption yet

� Where are (pk, sk)?

� Can be fixed with an auxiliary PKE

� Client does as much work as server

� Jumping ahead: how to extend it to multi-hop?

12

Plan for Today

� Definitions: i-hop homomorphic encryption
�Function-privacy (hiding the function)

�Compactness (server doing most of the work)

� “Folklore” connection to SFE
�Yao’s protocol � 1-hop non-compact HE

� Extensions to multi-Hop HE
�DDH-based “re-randomizable Yao”

�Generically 1-Hop �i-Hop (not today)
� With or without compactness

13

Homomorphic Encryption Schemes

� H = {KeyGen, Enc, Eval, Dec}

(pk,sk) � KeyGen(), c � Enc(pk; x)

c* � Eval(pk; f, c), y � Dec(sk; c*)

� Homomorphic: Decsk(Evalpk(f,Encpk(x)))=f(x)

� i-Hop Homomorphic (i = poly(sec-param)):

y = fj(fj−−−−1(… f1(x) …))

� Multi-hop Homomorphic: i-Hop for all i

Evalpk(f1,c0)Encpk(x) Evalpk(f2,c1) Decsk(x)
c0

c1 c2 cj yx …

j≤i hops

14

Properties of Homomorphic Encryption

� Semantic Security [GoMi84]

�≤x,x’, Encpk(x) { Encpk(x’)

� Compactness

� The same circuit can decrypt c0, c1, …, ci

�The size of the cj’s cannot depend on the fj’s

� Hence the name

� Functionality, not security property

15

1-hop: Output of Evalpk(f,c) can be

simulated knowing only pk, c, f(x)

� ∃ Sim such that for any f, x, pk, c�Encpk(x)

Evalpk(f,c) {{{{ Sim(pk, c, f(x), |f|)

i-hop: Same thing, except c is evaluated

Evalpk(f,cj) {{{{ Sim(pk, cj, f(fj(…f1(x)…)), |f|)

� Crucial aspect: indistinguishable given sk and cj’s

� And randomness that was used to generate them

Function Privacy

honest-but-
curious

Evalpk(f1,c0)Encpk(x) Evalpk(fj,cj-1)
c0

c1 cj−1 cj
x …

j≤i−1 hops

Eval

Sim

?

16

Aside: “fully” homomorphic

� If c’�Eval(f,c) has the same distribution as

“fresh” ciphertexts, then we get both
compactness and function-privacy

� This is “fully” homomorphic

�Very few candidates for “fully” homomorphic

schemes [G09, vDGHV10]

� Under “circular” assumptions

�Not the topic of today’s talk

17

Yao’s protocol � 1-hop

Function-Private HE

Alice(x) Bob(f)

(c,s)�SFE1(x)

r �SFE2(f,c)r
y �SFE3(s,r)

c

Dora(sk)

18

Decsk(r,c’)

Evalpk(f,c,c’)Enc’pk(x)

Yao’s protocol � 1-hop

Function-Private HE

� Add an auxiliary encryption scheme
� with (pk,sk)

Alice(x,pk) Bob(f)

c, c’

r, c’

Dora(sk)

(c,s)�SFE1(x)
c’�Encpk(s) r �SFE2(f,c)

s �Decsk(c’)
y �SFE3(s,r)

19

Yao’s protocol � 1-hop

Function-Private HE

Auxiliary scheme E = (Keygen, Enc, Dec)

� H.Keygen: Run (pk,sk)� E.Keygen()

� H.Encpk(x): (s,c)�SFE1(x), c’�E.Encpk(s)

Output [c,c’]

� H.Evalpk(f, [c,c’]): Set r�SFE2(f,c)

Output [r,c’]

� H.Decsk([r,c’]): Set s�E.Decsk(c’)

Output y�SFE3(s, r)

Works
for every
2-move

SFE
protocol

20

Extending to multi-hop HE

� Can Charlie process evaluated ciphertext?

Alice(x,pk) Bob(f)

c, c’(c,s)�SFE1(x)
c’�Encpk(s)

r �SFE2(f,c) r, c’ ?

Charlie(g)

21

r �Yao2(f,c)

Extending to multi-hop HE

� Can Charlie process evaluated ciphertext?

� Γ(f) include both labels for every f-output

�Charlie can use them as g-input labels

�Proceed to extend Γ(f) into Γ(g) f)

Alice(x,pk) Bob(f)

c, c’

c = OT1(x)

r, c’ ?

Charlie(g)

r = OT2(c)

Γ(f)

r’�Extend(g,r) r’, c’(c,s)�Yao1(x)
c’�Encpk(s)

22

Extendable 2-move SFE

� Given g and r�SFE2(f, SFE1(x)), compute

r’ = Extend(g,r) ∈ SFE2(g) f, SFE1(x))

� I.e., r’ in the support of SFE2(g) f, SFE1(x))

� Maybe also require that the distributions
SFE2(g) f, SFE1(x))
Extend(g, SFE2(f, SFE1(x))

are identical/close/indistinguishable

�This holds for Yao’s protocol*

* Assuming appropriate canonicalization

23

Charlie’s privacy

� Charlie’s function g hidden from Alice, Dora

�Since r’ ~ Yao2(g) f, c), then g) f is hidden

� But not from Bob

� r includes both labels for each input wire of g

� Yao2 protects you when only one label is known

�Given r, can fully recover g from r’

Alice(x) Bob(f) Charlie(g) Dora(sk)

(c,s)�Yao1(x) r�Yao2(f,c) r’�Extend(g,r) y�Yao3(s,r’)c r r’

24

Fixing Charlie’s privacy

� Problem: Extend(g,r) is not random given r

� Solution: re-randomizable Yao

�Given any r ∈ Γ(f), produce another random
garbling of the same circuit, r’�reRand(r)

� r’�reRand(r) { Γ(f), even given r

� Charlie outputs r’�reRand(Extend(g,r))

25

Re-Randomizable SFE

� Π=(SFE1, SFE2, SFE3) re-randomizable
if ≤ x, f, (c,s)�SFE1(x), r�SFE2(f,c)

reRand(r) { SFE2(f,c)

Identical / close / indistinguishable

�Even given x, f, c, r, s

Thm: Extendable + re-Randomizable SFE
� multi-hop function-private HE

Proof: Evaluator j sets rj�reRand(Extend(fj,rj-1))

Honest-but-curious

26

Re-randomizing Garbled Circuits

� DDH-based re-randomizable Yao Circuits

� Using Naor-Pinkas/Aiello-Ishai-Reingold
for the OT protocol

�Any “blindable OT” will do

� Using Boneh-Halevi-Hamburg-Ostrovsky
for gate-gadget encryption

�Need both key- and plaintext-homomorphism

�And resistance to leakage…

27

DDH-based OT [NP01,AIR01]

� OT1(b) = <g, h, x=gr, {yb=hr, y1-b=hr’}>

� (g, h, x, yb)-DDH, (g, h, x, y1-b)-non-DDH

� OT2((g, h, x, y0,y1), γ0, γ1)

= <(gs0ht0, xs0y0
t0 gγ0),(gs1ht1, xs1y1

t1 gγ1)>

� On strings γ0,γ1, use same (g,h,x,y0,y1) for all bits

� Scheme is additive homomorphic:

� For every c�OT1(b), r�OT2(c,γ0,γ1), δ0, δ1

reRand(c, r, δ0, δ1) ≡ OT2(c, γ0/δ0, γ1/δ1)

γ0, γ1 are bits

28

BHHO encryption [BHHO08]

� We view it as a secret-key encryption

� Secret key is a bit vector s∈{0,1}l

� Encryption of bit b is a vector <g0, g1, …, g
l
>

� Such that g0 Πj gj
sj = gb

� BHHO public key is a random encryption of zero

� Key- and plaintext- additively-homomorphic

� For every s,t,δ,δ’∈{0,1}l, pk�Encs(0), c�Encs(t):

c’�reRand(pk,c,δ,δ’) { Encs/δ(t/δ’)

� c’ (pseudo)random, even given pk, c, s, t, δ, δ’

29

BHHO-based Yao Circuits

� Use NP/AIR protocol for the 1-of-2-OT

� Two l-bit masks Lw,0, Lw,1 for every wire

�Used as BHHO secret keys

� A gadget for gate w = u(v:

�Choose four random masks δa,b (a,b∈{0,1})

�Gate gadget has four pairs (in random order)

{ <EncLu,a(δδδδa,b), EncLv,b(δδδδa,b////Lw,c)> : c = a((((b }

Lw,1

Lu,0
Lu,1

Lv,0
Lv,1

Lw,0

((((

30

Is this re-Randomizable?

� Not quite…

� Want to XOR a random δw,b into each Lw,b

�But don’t know what ciphertexts use Lw,0 / Lw,1

�Cannot use different masks for the two labels

� XOR the same mask to both Lw,0, Lw,1?

�No. Bob knows old-Lw,0, old-Lw,1, Dora knows

new-Lw,b, together they can deduce new-Lw,1−b

31

Better re-Randomization?

� We must apply the same transformation

T(∗) to both labels of each wire

�Tδ(x) = x //// δ does not work

� We “really want” 2-universal hashing:

�Given L0, L1, T(Lb), want T(L1−b) to be random

�Must be able to apply T(∗) to both key, plaintext

� Even BHHO can’t do this (as far as we know)

�But it can get close…

32

Stronger homomorphism of BHHO

� Key- and plaintext-homomorphic for every

transformation T(∗) that:

� Is an affine function over Zq
l

� Maps 0-1 vectors to 0-1 vectors

� In particular: bit permutations

� multiplication by a permutation matrix

� For every pk�Encs(0), c�Encs(t), π,π’∈S
l

c’�permute(pk,c,π,π’) { Encπ(s)(π’(t))

� c’ (pseudo)random, even given pk, c, s, π, π’

33

Bit Permutation is “sort-of” Universal

� For random Hamming-weight-l/2 strings

Permutation Lemma:

For random L, L’∈R HW(l/2), π∈R S
l
, the expected

residual min-entropy of π(L’) given π(L), L, L’ is

EL,L’,π{ H∞(π(L’) | π(L), L, L’) } ≥ l – 3/2 log l

Proof: Fix L, L’, π(L), then π(L’) is uniform in the

set { x ∈ HW(l/2) : HD(π(L), x) = HD(L, L’) }

� HD – Hamming Distance

34BHHO is secure even

with balanced keys

re-Randomizable BHHO-based Yao

� Labels have Hamming weight exactly l/2

� Use NP/AIR protocol for the 1-of-2-OT

� Two masks Lw,0,Lw,1∈HW(l/2) for every wire

� A gadget for gate w = u(v:

�Gate gadget has four pairs (in random order)

{ <EncLu,a(δa,b), EncLv,b(δa,b/Lw,c)> : c = a(b }

� Instead of output labels (secret keys),
provide corresponding public keys
�Still extendable: can use pk for encryption

35

re-Randomization

Input: OT response r, garbled circuit Γ

� Choose a permutation πw for every wire w

� For input wires, permute the OT response

�We use bit-by-bit OT, and “blindable”

� Permute the gate gadgets accordingly

� Also re-randomize the gate masks δa,b

�Using the BHHO additive homomorphism

36

re-Randomizable yet?

� For each wire, adversary knows L, L’, π(L)

� Permutation lemma: min-entropy of π(L’) almost l bits

� We use π(L’) as BHHO secret key

� Use Naor-Segev’09 to argue security

� NS09: BHHO is secure, under leakage of O(l) bits

� View L, L’, π(L) as randomized leakage on π(L’)

� Leaking only 3/2 log l bits on the average

� So we’re safe

� Security proof is roughly the same as the

Lindell-Pinkas proof of the basic Yao protocol

L, L’ random in the

honest-but-curious

model

37

Summary

� Highlighted the multi-hop property for
homomorphic encryption
� In connection to function privacy, compactness

� Described connections to SFE

� A DDH-based multi-hop function private scheme
� Not compact

� Uses re-randomizable Yao circuits

� Other results (generic):
� 1-hop FP � i-hop FP for every constant i

� 1-hop compact FP � i-hop compact FP for every i

� 1-hop compact + 1-hop FP � 1-hop compact FP

38

Open Problems

� Malicious model

�The generic constructions still apply

�Not the randomized-Yao-circuit construction

� Main sticky point is the permutation lemma

� Other extensions

�General evaluation network (not just a chain)

�Hiding the evaluation-network topology

�Other adversary structures

39

Thank you

40

1-hop Function-Private � i-hop FP

� Given E = (KeyGen, Enc, Eval, Dec)
� and a constant parameter d

� Build Hd = (KeyGen*, Enc*, Eval*, Dec*)
�d-hop function-private, complexity nO(d)

� Use d+1 E-public-keys
�αj encrypts j’th sk under j+1st pk

� j th node evaluates fj)Deccj-1(∗) on ciphertext αj

� The input to Deccj-1 is sk

� Ciphertext from node j-1 hard-wired in Deccj-1

� αj is a “fresh ciphertext”, not an evaluated one

41

1-hop Function-Private � i-hop FP

KeyGen*: (pkj,skj)�KeyGen(), αj�Encpkj+1(skj)

�sk*={skj}, pk*={(αj, pkj)}, j=0,1, …, d

Encpk*
(x): output [level-0, Encpk0(x)]

Decsk*([level-j, c]): output Decskj(c)

Evalpk*
(f, [level-j, c]):

�Compute description of Ff,c(s) h f(Decs(c))

� Input is s, not c

�Set c’�Evalpkj+1(Ff,c, αj), output [level-(j+1), c’]

*

*

*

42

1-hop Function-Private � i-hop FP

� The description size of Ff,c(s) h f(Decs(c))

is at least | f | + |c|

� Size of c’=Evalpkj+1(Ff,c, αj) can be nO(1) % |Ff,c|

�For a non-compact scheme (e.g., Yao-based)

� So after i hops, ciphertext size is

nO(1) % (| fi| + nO(1) % (| fi−1| + … nO(1) % (| f1| +c0) …))

l nO(i) % (c0 + Σj| fj|)

� Can only do constant many hops

43

1-hop Compact FP � i-hop Compact FP

� If underlying scheme is compact, then size

of c’=Evalpkj+1(Ff,c, αj) does not grow

� Can do as many hops as αj’s in pk*

� If pk* includes α�Encpk(sk), then we can
handle any number of hops

�This assumes that scheme is circular secure

44

1-hop FP + 1-hop Compact

� 1-hop Compact FP

� Roughly, Eval*(f) = cEval(pEval(f))

�pEval makes it private, cEval compresses it

� pk* includes ppk, cpk1,cpk2, and also

α = pEncppk(csk0), β = cEnccpk1(psk)

�sk* = [csk0, csk1]

� Evalpk*(f, c): // c encrypted under cpk0

�Let Ff,c(s) h f(cDecs(c)), set c’�pEvalppk(Ff,c, α)

� Let Gc’(s) h pDecs(c’), set c*�cEvalcpk2(Gc’, β)

