

On *i*-Hop Homomorphic Encryption

Craig Gentry, <u>Shai Halevi</u>, Vinod Vaikuntanathan

IBM Research

This Work is About...

- Connections between:
- Homomorphic encryption (HE)
- Secure function evaluation (SFE)

Secure Function Evaluation (SFE)

Client Alice has data x

Server Bob has function f

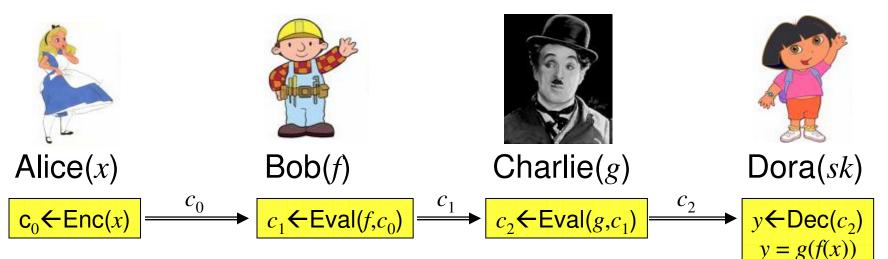
Alice wants to learn f(x)

- 1. Without telling Bob what *x* is
- 2. Bob may not want Alice to know f
- 3. Client Alice may also want server Bob to do most of the work computing f(x)

Homomorphic Encryption (HE)

Alice encrypts data x Not necessarily $c^* \cong c$ \Box sends to Bob $c \leftarrow Enc(x)$ Bob computes on encrypted data \Box sets $c^* \leftarrow Eval(f, c)$ $\Box c^*$ is supposed to be an encryption of f(x) \Box Hopefully it hides f (function-private scheme) Alice decrypts, recovers $y \leftarrow Dec(c^*)$ Scheme is (fully) homomorphic if y = f(x)

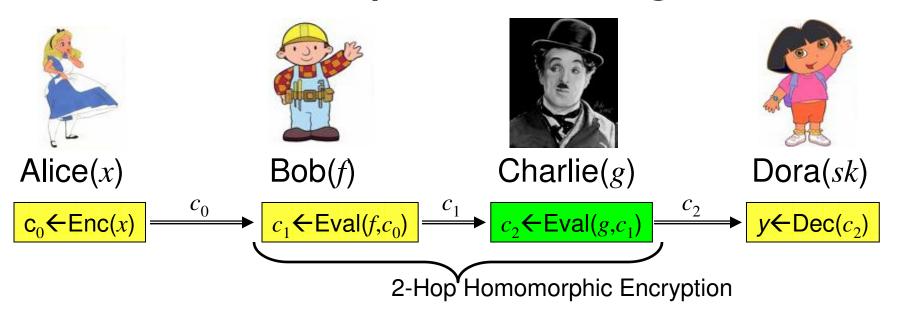
A More Complex Setting



Alice sends encrypted email to Dora:

- 1. Mail goes first to SMTP server at BobsISP.com
 - Bob's ISP looks for "Make money", if found then it tags email as suspicious
- 2. Mail goes next to mailboxes.charlie.com
 - More processing/tagging here
- 3. Dora's mail client fetches email and decrypts it

A More Complex Setting



- c₁ is not a fresh ciphertext
 - May look completely different
- Can Charlie process it at all?
- What about security?

Background

Yao's garbled circuits

 Two-move 1-of-2 Oblivious Transfer

 "Folklore" connection to HE

 Two-move SFE → function-private HE

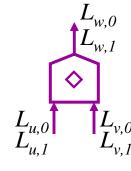
1-of-2 Oblivious Transfer

- Alice has bit b, Bob has two Strings L_0, L_1
- Alice learns L_b , Bob learns nothing
- Alice sets $(c,s) \leftarrow OT1(b)$ sends c to Bob □ The c part in OT1(0), OT1(1) is indistinguishable
- Bob responds with $r \leftarrow OT2(c, L_0, L_1)$ □ ∃ Sim such that for any $L_0, L_1, b, (c,s) \leftarrow OT1(b)$ OT2(c, L_0, L_1) \cong Sim(c, s, L_b)
- Alice recovers $L_b \leftarrow OT-out(s,r)$

honest-butcurious

Yao's Garbled Circuits

- Bob has f (fan-in-2 boolean circuit)
- Bob chooses two labels L_{w,0}, L_{w,1} for every wire w in the f-circuit
- A gadget for gate $w = u \diamond v$: □ Know $L_{u,a}$ and $L_{v,b} \rightarrow \text{Learn } L_{w,a \diamond b}$ { $\text{Enc}_{L_{u,a}}(\text{Enc}_{L_{v,b}}(L_{w,c})) : c = a \diamond b$ }



Collection of gadgets for all gates + mapping output labels to 0/1 is the garbled circuit $\Gamma(f)$

Yao's Protocol

- Run 1-of-2-OT for each input wire *w* with input x_j □ Alice(x_j) \leftrightarrow Bob($L_{w,0}, L_{w,1}$), Alice learns L_{w,x_j}
- Bob also sends to Alice the garbled circuit $\Gamma(f)$
- Alice knows one label on each input wire
 - computes up the circuit
 - learns one output label, maps it to 0/1
- Bob learns nothing
- Alice's view simulatable knowing only f(x) and |f|

Assuming circuit topology is "canonicalized"

Folklore: Yao's protocol -> HE

Roughly:

- \Box Alice's message $c \leftarrow OT1(x)$ is Enc(x)
- \square Bob's reply [OT2(*c*, labels), $\Gamma(f)$] is Eval(*f*,*c*)
- Not quite public-key encryption yet
 - □ Where are (pk, sk)?
 - □ Can be fixed with an auxiliary PKE
- Client does as much work as server
- Jumping ahead: how to extend it to multi-hop?

Plan for Today

- Definitions: i-hop homomorphic encryption □ Function-privacy (hiding the function) Compactness (server doing most of the work) "Folklore" connection to SFE \Box Yao's protocol \rightarrow 1-hop non-compact HE Extensions to multi-Hop HE DDH-based "re-randomizable Yao" \Box Generically 1-Hop $\rightarrow i$ -Hop (not today)
 - With or without compactness

Homomorphic Encryption Schemes

- $H = \{ \text{KeyGen, Enc, Eval, Dec} \}$ (pk,sk) ← KeyGen(), $c \leftarrow \text{Enc}(\text{pk}; x)$ $c^* \leftarrow \text{Eval}(\text{pk}; f, c), \quad y \leftarrow \text{Dec}(\text{sk}; c^*)$
- Homomorphic: $Dec_{sk}(Eval_{pk}(f, Enc_{pk}(x))) = f(x)$
- *i*-Hop Homomorphic (*i* = poly(sec-param)):

$$x \rightarrow \operatorname{Enc}_{\mathsf{pk}}(x) \xrightarrow{c_0} \operatorname{Eval}_{\mathsf{pk}}(f_1, c_0) \xrightarrow{c_1} \operatorname{Eval}_{\mathsf{pk}}(f_2, c_1) \xrightarrow{c_2} \cdots \xrightarrow{c_j} \operatorname{Dec}_{\mathsf{sk}}(x) \rightarrow y$$
$$y = f_j(f_{j-1}(\cdots, f_1(x), \cdots))$$

Multi-hop Homomorphic: *i*-Hop for all *i*

Properties of Homomorphic Encryption

- Semantic Security [GoMi84] $\Box \forall x, x', Enc_{pk}(x) \cong Enc_{pk}(x')$
- Compactness
 - The same circuit can decrypt $c_0, c_1, ..., c_i$
 - → The size of the c_j's cannot depend on the f_j's
 Hence the name
 - □ Functionality, not security property

Function Privacy

honest-but-1-hop: Output of $Eval_{pk}(f,c)$ can be curious simulated knowing only pk, c, f(x) $\Box \exists$ Sim such that for any f, x, pk, $c \leftarrow Enc_{pk}(x)$ $Eval_{pk}(f,c) \cong Sim(pk, c, f(x), |f|)$ *i*-hop: Same thing, except c is evaluated Eval $x \rightarrow \text{Enc}_{pk}(x) \xrightarrow{c_0} \text{Eval}_{pk}(f_1,c_0) \xrightarrow{c_1} \cdots \xrightarrow{c_{j-1}} \text{Eval}_{pk}(f_j,c_{j-1})$? Sim $\checkmark_{j\leq i-1}$ hops $Eval_{pk}(f,c_{i}) \cong Sim(pk, c_{i}, f(f_{i}(...,f_{1}(x)...)), |f|)$ • Crucial aspect: indistinguishable given sk and c_i 's

And randomness that was used to generate them

Aside: "fully" homomorphic

If c'←Eval(f,c) has the same distribution as "fresh" ciphertexts, then we get both compactness and function-privacy

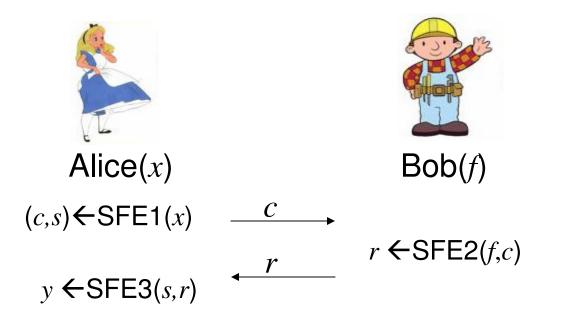
This is "fully" homomorphic

Very few candidates for "fully" homomorphic schemes [G09, vDGHV10]

Under "circular" assumptions

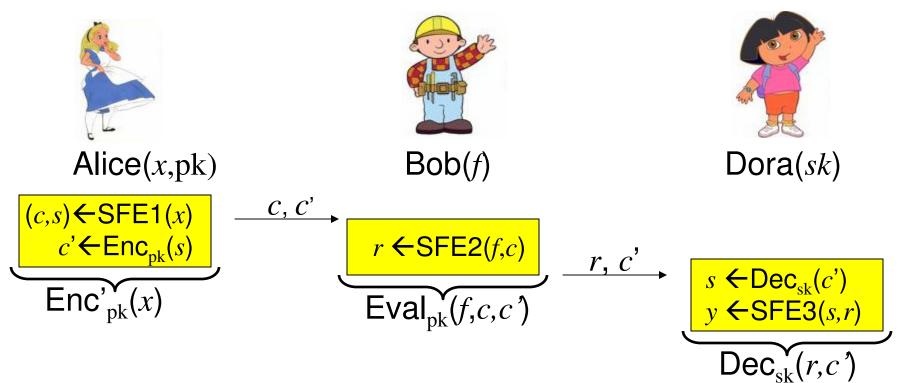
Not the topic of today's talk

Yao's protocol → 1-hop Function-Private HE



Dora(sk)

Yao's protocol → 1-hop Function-Private HE



Add an auxiliary encryption scheme
 with (pk,sk)

Yao's protocol → 1-hop Function-Private HE

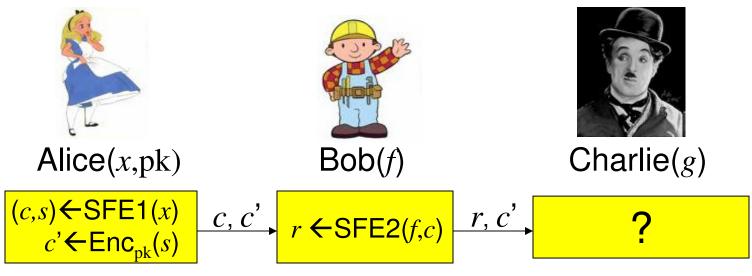
Auxiliary scheme *E* = (Keygen, Enc, Dec)

- *H*.Keygen: Run (pk,sk) ← *E*.Keygen()
- $H.Enc_{pk}(x)$: $(s,c) \leftarrow SFE1(x), c' \leftarrow E.Enc_{pk}(s)$ Output [c,c']
- $H.Eval_{pk}(f, [c,c'])$: Set $r \leftarrow SFE2(f,c)$ Output [r,c']
- $H.\text{Dec}_{sk}([r,c'])$: Set $s \leftarrow E.\text{Dec}_{sk}(c')$ Output $y \leftarrow \text{SFE3}(s, r)$

Works for every 2-move SFE protocol

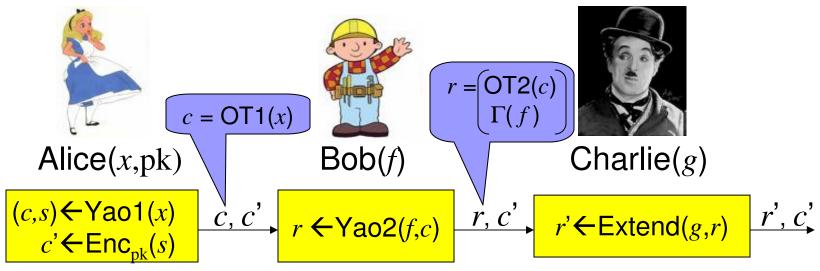
Extending to multi-hop HE

Can Charlie process evaluated ciphertext?



Extending to multi-hop HE

Can Charlie process evaluated ciphertext?

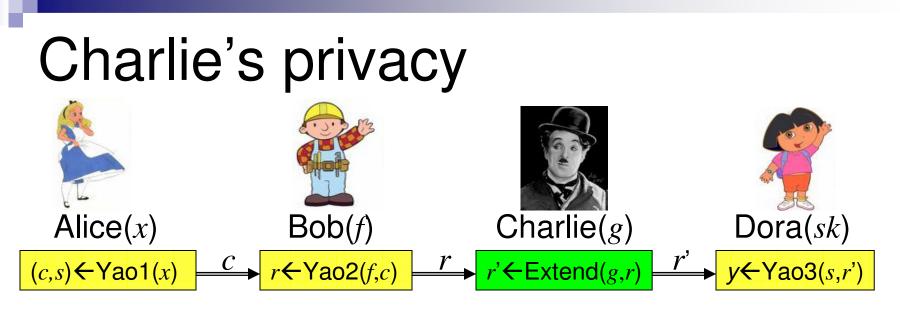


Γ(f) include both labels for every f-output
 Charlie can use them as g-input labels
 Proceed to extend Γ(f) into Γ(g of)

Extendable 2-move SFE

Given g and $r \leftarrow SFE2(f, SFE1(x))$, compute $r' = \text{Extend}(g,r) \in \text{SFE2}(g \circ f, \text{SFE1}(x))$ \Box I.e., *r*' in the support of SFE2(*g* of, SFE1(*x*)) Maybe also require that the distributions $SFE2(g \circ f, SFE1(x))$ Extend(g, SFE2(f, SFE1(x)) are identical/close/indistinguishable □ This holds for Yao's protocol*

* Assuming appropriate canonicalization



- Charlie's function g hidden from Alice, Dora
 Since r' ~ Yao2(g of, c), then g of is hidden
- But not from Bob

 \Box *r* includes both labels for each input wire of *g*

Yao2 protects you when only one label is known

 \Box Given *r*, can fully recover *g* from *r*'

Fixing Charlie's privacy

- Problem: Extend(g,r) is not random given r
- Solution: re-randomizable Yao
 - □ Given any $r \in \Gamma(f)$, produce another random garbling of the same circuit, $r' \leftarrow reRand(r)$
- $r' \leftarrow \operatorname{reRand}(r) \cong \Gamma(f)$, even given r
- Charlie outputs $r' \leftarrow reRand(Extend(g,r))$

Re-Randomizable SFE

■ Π =(SFE1, SFE2, SFE3) re-randomizable if $\forall x, f, (c,s) \leftarrow SFE1(x), r \leftarrow SFE2(f,c)$

 $reRand(r) \cong SFE2(f,c)$

Honest-but-curious

Identical / close / indistinguishable

 \Box Even given *x*, *f*, *c*, *r*, *s*

Thm: Extendable + re-Randomizable SFE

→ multi-hop function-private HE

Proof: Evaluator *j* sets $r_i \leftarrow reRand(Extend(f_i, r_{j-1}))$

Re-randomizing Garbled Circuits

- DDH-based re-randomizable Yao Circuits
- Using Naor-Pinkas/Aiello-Ishai-Reingold for the OT protocol
 - □ Any "blindable OT" will do
- Using Boneh-Halevi-Hamburg-Ostrovsky for gate-gadget encryption
 - Need both key- and plaintext-homomorphism
 - □ And resistance to leakage...

DDH-based OT [NP01,AIR01]

- $OT1(b) = \langle g, h, x = g^r, \{y_b = h^r, y_{1-b} = h^{r'}\} >$ $\Box (g, h, x, y_b)$ -DDH, (g, h, x, y_{1-b}) -non-DDH
- On strings $\vec{\gamma}_0, \vec{\gamma}_1$, use same (g, h, x, y_0, y_1) for all bits
- Scheme is additive homomorphic:
 - □ For every $c \leftarrow OT1(b)$, $r \leftarrow OT2(c, \gamma_0, \gamma_1)$, δ_0 , δ_1 reRand(c, r, δ_0, δ_1) ≡ OT2($c, \gamma_0 \oplus \delta_0, \gamma_1 \oplus \delta_1$)

BHHO encryption [BHHO08]

- We view it as a secret-key encryption
- Secret key is a bit vector $s \in \{0,1\}^{\ell}$
- Encryption of bit *b* is a vector <*g*₀, *g*₁, ..., *g*_ℓ>
 Such that *g*₀ Π_j *g*_j^{s_j} = *g^b* BHHO public key is a random encryption of zero
- Key- and plaintext- additively-homomorphic
 - □ For every $s,t,\delta,\delta' \in \{0,1\}^{\ell}$, pk←Enc_s(0), c←Enc_s(t): c'←reRand(pk,c,\delta,\delta') ≅ Enc_{s⊕\delta}(t⊕\delta')
 - \Box c' (pseudo)random, even given pk, c, s, t, δ , δ '

BHHO-based Yao Circuits

Use NP/AIR protocol for the 1-of-2-OT Two ℓ -bit masks $L_{w,0}$, $L_{w,1}$ for every wire □ Used as BHHO secret keys • A gadget for gate $w = u \diamond v$: \Box Choose four random masks $\delta_{a,b}$ ($a,b \in \{0,1\}$) Gate gadget has four pairs (in random order) $\{ < \mathsf{Enc}_{L_{u,a}}(\delta_{a,b}), \, \mathsf{Enc}_{L_{v,b}}(\delta_{a,b} \oplus L_{w,c}) > : c = a \diamond b \}$

Is this re-Randomizable?

Not quite...

Want to XOR a random δ_{w,b} into each L_{w,b}
 But don't know what ciphertexts use L_{w,0} / L_{w,1}
 Cannot use different masks for the two labels

XOR the same mask to both L_{w,0}, L_{w,1}?
 No. Bob knows old-L_{w,0}, old-L_{w,1}, Dora knows new-L_{w,b}, together they can deduce new-L_{w,1-b}

Better re-Randomization?

We must apply the same transformation T(*) to both labels of each wire

 $\Box T_{\delta}(x) = x \oplus \delta \text{ does not work}$

- We "really want" 2-universal hashing:
 - \Box Given $L_0, L_1, T(L_b)$, want $T(L_{1-b})$ to be random
 - \Box Must be able to apply T(*) to both key, plaintext
- Even BHHO can't do this (as far as we know)
 But it can get close...

Stronger homomorphism of BHHO

Key- and plaintext-homomorphic for every transformation T(*) that:

 \Box Is an affine function over Z_q^{ℓ}

□ Maps 0-1 vectors to 0-1 vectors

In particular: bit permutations

multiplication by a permutation matrix

■ For every $pk \leftarrow Enc_s(0), c \leftarrow Enc_s(t), \pi, \pi' \in S_\ell$ $c' \leftarrow permute(pk, c, \pi, \pi') \cong Enc_{\pi(s)}(\pi'(t))$ $\Box c'$ (pseudo)random, even given pk, c, s, π, π'

Bit Permutation is "sort-of" Universal

For random Hamming-weight-l/2 strings

Permutation Lemma:

For random *L*, $L' \in_{\mathsf{R}} \mathsf{HW}(\ell/2)$, $\pi \in_{\mathsf{R}} S_{\ell}$, the expected residual min-entropy of $\pi(L')$ given $\pi(L)$, *L*, *L'* is $\mathsf{E}_{L,L',\pi}\{\mathsf{H}_{\infty}(\pi(L') \mid \pi(L), L, L')\} \ge \ell - \frac{3}{2} \log \ell$

Proof: Fix $L, L', \pi(L)$, then $\pi(L')$ is uniform in the set { $x \in HW(\ell/2) : HD(\pi(L), x) = HD(L, L')$ }

□ HD – Hamming Distance

re-Randomizable BHHO-based Yao

- Labels have Hamming weight exactly l/2
- Use NP/AIR protocol for the 1-of-2-OT
- Two masks $L_{w,0}, L_{w,1} \in HW(\ell/2)$ for every wire
- A gadget for gate w = u◊v:
 Gate gadget has four pairs (in random order)
 { <Enc_{Lu,a}(δ_{a,b}), Enc_{Lv,b}(δ_{a,b}⊕L_{w,c})> : c = a◊b }
 Instead of output labels (secret keys),
 provide corresponding public keys
 Still extendable: can use pk for encryption

re-Randomization

- Input: OT response r, garbled circuit Γ
- Choose a permutation π_w for every wire w
- For input wires, permute the OT response
 We use bit-by-bit OT, and "blindable"
- Permute the gate gadgets accordingly
- Also re-randomize the gate masks $\delta_{a,b}$ Using the BHHO additive homomorphism

re-Randomizable yet?

L, L' random in the honest-but-curious model

- For each wire, adversary knows $L, L', \pi(L)$ Permutation lemma: min-entropy of $\pi(L')$ almost ℓ bits
- We use π(L') as BHHO secret key
 Use Naor-Segev'09 to argue security
- <u>NS09</u>: BHHO is secure, under leakage of O(ℓ) bits
- View L, L', π(L) as randomized leakage on π(L')
 Leaking only ³/₂ log ℓ bits on the average
 So we're safe
- Security proof is roughly the same as the Lindell-Pinkas proof of the basic Yao protocol

Summary

 Highlighted the multi-hop property for homomorphic encryption
 In connection to function privacy, compactness

Described connections to SFE

- A DDH-based multi-hop function private scheme
 - Not compact
 - Uses re-randomizable Yao circuits
- Other results (generic):
 - ▶ 1-hop FP \rightarrow *i*-hop FP for every constant *i*
 - □ 1-hop compact FP \rightarrow *i*-hop compact FP for every *i*
 - \Box 1-hop compact + 1-hop FP \rightarrow 1-hop compact FP

Open Problems

- Malicious model
 - □ The generic constructions still apply
 - □ Not the randomized-Yao-circuit construction
 - Main sticky point is the permutation lemma
- Other extensions
 - □ General evaluation network (not just a chain)
 - □ Hiding the evaluation-network topology
 - □ Other adversary structures

Thank you

1-hop Function-Private → *i*-hop FP

- Given E = (KeyGen, Enc, Eval, Dec)
 and a constant parameter d
- Build H_d = (KeyGen*, Enc*, Eval*, Dec*)
 d-hop function-private, complexity n^{O(d)}

Use d+1 E-public-keys

 $\Box \alpha_i$ encrypts *j*'th sk under *j*+1st pk

- $\Box j^{\text{th}}$ node evaluates $f_j \circ \text{Dec}_{c_{j-1}}(*)$ on ciphertext α_j
 - The input to $\text{Dec}_{c_{j-1}}$ is sk
 - Ciphertext from node j-1 hard-wired in Dec_{i-1}
 - α_j is a "fresh ciphertext", not an evaluated one

1-hop Function-Private → *i*-hop FP

KeyGen*: $(pk_{j}, sk_{j}) \leftarrow KeyGen(), \alpha_{j} \leftarrow Enc_{pk_{j+1}}(sk_{j})$ $\Box sk^* = \{sk_i\}, pk^* = \{(\alpha_i, pk_i)\}, j = 0, 1, ..., d$ **Enc**^{*}_{**pk**}(x): output [level-0, $Enc_{pk_0}(x)$] **Dec**^{*}_{**sk**} ([level-*j*, *c*]): output $\text{Dec}_{sk}(c)$ **Eval**^{*}_{**pk**} (*f*, [level-*j*, *c*]): $\Box \text{ Compute description of } F_{f,c}(s) \equiv f(\text{ Dec}_{s}(c))$ Input is s, not c \Box Set $c' \leftarrow Eval_{pk_{j+1}}(F_{f,c}, \alpha_j)$, output [level-(j+1), c']

1-hop Function-Private → *i*-hop FP

- The description size of $F_{f,c}(s) \equiv f(\text{Dec}_s(c))$ is at least |f| + |c|
- Size of $c'=\text{Eval}_{pk_{j+1}}(F_{f,c}, \alpha_j)$ can be $n^{O(1)} \times |F_{f,c}|$ For a non-compact scheme (e.g., Yao-based)
- So after i hops, ciphertext size is

$$\begin{split} n^{\mathrm{O}(1)} \times (|f_i| + n^{\mathrm{O}(1)} \times (|f_{i-1}| + \dots n^{\mathrm{O}(1)} \times (|f_1| + c_0) \dots)) \\ \approx n^{\mathrm{O}(i)} \times (c_0 + \Sigma_j |f_j|) \end{split}$$

Can only do constant many hops

1-hop Compact FP \rightarrow *i*-hop Compact FP

- If underlying scheme is compact, then size of c'=Eval_{pk_{j+1}}(F_{f,c}, α_j) does not grow
- Can do as many hops as α_i 's in pk*
- If pk* includes α←Enc_{pk}(sk), then we can handle any number of hops

□ This assumes that scheme is circular secure

- Roughly, Eval*(f) = cEval(pEval(f))
 pEval makes it private, cEval compresses it
 pk* includes ppk, cpk1,cpk2, and also
 α = pEnc_{ppk}(csk₀), β = cEnc_{cpk1}(psk)
 sk* = [csk₀, csk₁]
- $Eval_{pk^*}(f, c)$: // c encrypted under cpk_0 □ Let $F_{f,c}(s) \equiv f(cDec_s(c))$, set c'←p $Eval_{ppk}(F_{f,c}, \alpha)$ □ Let $G_{c'}(s) \equiv pDec_s(c')$, set c*← $cEval_{cpk_2}(G_{c'}, \beta)$

44