
Computing inverses over a shared secret modulus �Dario Catalano� Rosario Gennaroy Shai HaleviyMarch 21, 2000AbstractWe discuss the following problem: Given an integer � shared secretly among nplayers and a prime number e, how can the players e�ciently compute a sharing ofe�1 mod �. The most interesting case is when � is the Euler function of a knownRSA modulus N , � = �(N). The problem has several applications, among whichthe construction of threshold variants for two recent signature schemes proposed byGennaro-Halevi-Rabin and Cramer-Shoup.We present new and e�cient protocols to solve this problem, improving over previoussolutions by Boneh-Franklin and Frankel et al. Our basic protocol (secure againsthonest but curious players) requires only two rounds of communication and a singleGCD computation. The robust protocol (secure against malicious players) adds only acouple of rounds and a few modular exponentiations to the computation.
�Dipartimento di Matematica e Informatica, Universit�a di Catania. Viale A. Doria 6,95125 Catania. Email: catalano@dmi.unict.it. Work done while visiting the ComputerScience Dept. of Columbia University.yIBM T.J.Watson Research Center, PO Box 704, Yorktown Heights, New York 10598,USA. Email: frosario,shaihg@watson.ibm.com�A preliminary version of the paper will appear in the proceedings of \EUROCRYPT 2000".1

1 IntroductionIn this paper we consider the problem of computing a multiplicative inverse of a knownprime number over a shared secret modulus. Speci�cally, given a known prime number e,and an integer � shared secretly among n players, how can the players compute a sharingof e�1 mod �, without revealing anything about �. The most interesting case is when � isthe Euler function of a known RSA modulus � = �(N), since in this case the security ofthe RSA cryptosystem [22] is based on the assumption that �(N) remains secret.The most important applications of distributed modular inversion over a shared modulusare distributed RSA key generation, and distributing the new signature schemes of Gennaro-Halevi-Rabin [17] and Cramer-Shoup [9]. In particular, in the latter applications it isvery important to have an e�cient inversion protocol, since in these signature schemes theinversion operation is performed with a di�erent exponent e for each message signed.We present new and e�cient protocols to solve the problem of inversion with a sharedmodulus. We �rst present a basic protocol which is only secure against honest but curiousplayers. This protocol is extremely e�cient as it requires only two rounds of communicationand a single GCD computation on the part of the players. The protocol is also uncondition-ally secure (given a network of private channels). We then add robustness to the protocolin order to make it secure against malicious players. These modi�cations add only a cou-ple of rounds and a few modular exponentiations to the computation. To overcome thedi�culty of working over an unknown modulus, the protocols use computations over theintegers. Some of the techniques developed to prove the security of the protocols may be ofindependent interest.Previous work. Although our problem can in principle be solved using generic multipartycomputation protocols [19, 3, 8], the resulting solutions would hardly be practical.Boneh-Franklin. The �rst to address the issue of an e�cient solution for this problemwere Boneh and Franklin, who in a breakthrough result show how n > 3 parties can jointlygenerate an RSA key without a trusted dealer [5]. In particular, as part of their solutionthey show how the parties jointly compute d = e�1 mod �(N), where N; e are the RSAmodulus and public exponent, respectively, and �(N) is shared among the parties. Oursolution improves on some of the features of the Boneh-Franklin protocol. In particular:1. We only use a single invocation of the BGW [3] multiplication protocol, while theirprotocol needs two of them. Hence the round complexity of our protocol is half thatof the protocol in [5].2. The Boneh-Franklin protocol is based on an n-out-of-n solution where a single crashcould prevent the protocol from completing.1 To obtain a t-out-of-n solution, theysuggest using the \share-backup" approach of Rabin [21], but this approach has someknown problems. For one thing, it incurs the overhead of multiple layers of (veri�-able) secret-sharing. Moreover, it requires that the \good parties" recover the secretinformation of a party who may simply be temporarily disconnected.1In their setting, this is the natural solution, since they also generate the modulus so that it is sharedn-out-of-n. Indeed, to use our solution in their setting, one would have to implement also methods forgenerating and using the modulus in a t-out-of-n fashion.2

In contrast, our solution achieves directly a t-out-of-n threshold, using polynomialsharings and secret computations over the integers. Some of the most interestingtechnical contribution of our work are in the security proofs of these secret computa-tions over the integers.3. The Boneh-Franklin results are presented only in the honest-but-curious model whilewe are also able to present robust solutions that tolerate malicious players.4. In an updated version of [5], some other solutions are presented. One of them is par-ticularly e�cient since it avoids costly increases in the size of the shares. However,to achieve this e�ciency, the proposed solution leaks a few bits of information about�(N). Although this is acceptable for a protocol that is invoked only once (since thosefew bits could be guessed anyway by an adversary), it is not clear what happens whenthe protocol is invoked several times with the same �(N) (as in our signature appli-cations). Hence, we designed our protocols so that they do not leak any informationabout �(N), in a strong, statistical, sense. (This requires some increase in the size ofthe shares, though.)Frankel-McKenzie-Yung. Building on the Boneh-Franklin solution, Frankel, Mc Kenzieand Yung describe in [14] a way to add robustness to the protocols in [5], and in particularhow to add robustness to the inversion protocol. The FMY protocol follows the structure of[5], so it also needs two invocations of the BGW multiplication protocol. Moreover in orderto achieve a t-out-of-n threshold, the FMY protocol uses representation changes for thesharing of the secret data. Namely, data which is shared in a t-out-of-n fashion is convertedinto a t-out-of-t fashion in order to perform computations, and then re-converted into at-out-of-n sharing to preserve tolerance of crashing or malicious players. The complexity ofthe representation change is quite high, making the combined protocol much less e�cient.Although the complexity of this protocol is acceptable for the task of distributed RSA keygeneration, where the protocol is only run once, it is too high for a protocol that mustbe e�ciently run many times, as in the case of the signature applications. We avoid thise�ciency cost, by keeping the data always in a t-out-of-n representation.Others. Some of the techniques that we use in this work originated in papers overrobust and proactive RSA. In particular, working over the integers in order to overcomethe di�culty of computing modulo an unknown integer was used in several previous papers[13, 18, 12, 21]. Finally, the \dual" problem of computing x�1 mod p where p is known andx is shared was discussed in [2].2 PreliminariesThe network model. We consider a network of n players, that are connected by point-to-point private channels and by a broadcast channel.2 We model failures in the networkby an adversary A, who can corrupt at most t of the players. We distinguish between thefollowing types of \failures":2The communication assumptions allow us to focus on a high-level description of the protocols, and theycan be eliminated using standard techniques for privacy, authentication, commitment and agreement.3

� honest but curious: the adversary can just read the memory of the corrupted playersbut not modify their behavior;� halting: an \honest but curious" adversary who may also cause any of the corruptedplayers to crash and abort the protocol;� malicious: the adversary may cause players to deviate arbitrarily from the protocol.We assume for simplicity that the adversary is static, i.e. the set of corrupted players isdecided at the beginning of the computation of a protocol.3 We assume communicationis synchronous, except that we allow rushing adversaries (i.e. adversaries who decide themessages of the bad players at round R after having seen the messages of the good playersat the same round).2.1 De�nitionsNotations. In the following we denote the shared secret modulus by �, and by N wedenote an approximate bound on �, which must be known in the protocol (in the typicalRSA application, we can use the public modulus N as a bound on � = �(N)). We alsodenote by L the factorial of n (the number of players), i.e. L = n!A Modular Inversion Protocol is an n-player protocol, where as an input to the protocolthe players share a secret modulus � (with player Pi having the share �i), and all the playersknow public inputs e (a prime number) and N (an approximate bound on �). At the end ofthe protocol, each player Pi has a secret output di, which would be its share of the modularinverse d = e�1 mod �.Correctness. We say that a Modular Inversion Protocol is correct if the output valuesd1; : : : ; dn constitute a t-out-of-n secret sharing of d = e�1 mod �Privacy. We de�ne privacy using the usual simulation approach. That is, we considerthe view of the adversary A during a protocol to be the set of messages sent and receivedby the bad players during a run of the protocol. We say that a Modular Inversion Protocolis private if for any adversary A there exist a simulator S that runs an execution of theprotocol together with A and produces for it a view that is indistinguishable from the realone.Security. We say that a Modular Inversion Protocol is secure if it is correct and private.Remark 1 (Trusted dealer) In the above de�nition and in the presentation of the pro-tocols, we implicitly assume that the modulus � is already shared among the players usingan appropriate t-out-of-n scheme. Speci�cally, for our protocols we always assume that thissharing is done over the integers, with shares from some appropriately large domain. Insome cases we also assume that commitments to the shares of all the players are publiclyknown (see Section ??). The exact sharing formats of � that we need are stated explicitlyin the description of the protocols.These assumptions can be made formal by including the initialization phase in theprotocol de�nition, and analyzing the protocols under the assumption that this initialization3It is possible to use recent techniques by Canetti et al. [6] to make our protocols secure against adaptiveadversaries who corrupt players at any stage during the protocol.4

is done by a trusted dealer. However, we feel that such a formulation will only distractattention from the focus of this paper, which is the inversion protocol. In Section 7 webriey touch on the subject of eliminating the trusted dealer and instead having the nplayers jointly initialize the system.3 The Basic IdeaWe begin with a very simple protocol which, although doesn't quite solve our problem,is nonetheless useful for illustrating the basic ideas and techniques behind our solution.In particular, this protocol only works for n-out-of-n sharing (i.e. although it toleratescoalitions of n � 1 honest but curious players, it does not tolerate even a single crashingplayer).For this protocol, some multiple of the secret modulus � is shared additively between theplayers. That is, each player Pi holds a value �i such thatPi �i = ��, where � is a randominteger, much larger than � (say, of order O(N2)). In the inversion protocol, each player Pichooses a \randomizing integer" ri 2R [0::N3], and broadcasts the value i = �i + rie, andall the players compute =Pi i. Clearly, we have =Xi i =Xi �i + rie = ��+ Re(where R = Pi ri). Assuming that GCD(; e) = 1, there exist a; b such that a + be = 1and thus d = aR + b = e�1 mod �. Additive shares of d can be easily obtained by havingplayer P1 sets d1 = ar1 + b, and the other players set di = ari. Clearly d =Pi di.It is not hard to see that the only information leaked by the protocol is the value = ��+Re. But it is possible to prove that the distribution of is (almost) independentof �. Speci�cally, it can be shown that when � and R follow the probability distributiondescribed above, then the distributions f = ��+Reg and f 0 = �N+Reg are statisticallyclose (up to O(1=N)).It should be noted that the above protocol is not secure when it is used more than oncewith the same � and di�erent e's. Indeed, for each input e the protocol leaks the value�� mod e, and so after su�ciently many runs with di�erent e's we can then recover theinteger �� via the Chinese Remainder Theorem. To overcome this, it is necessary to use a"fresh" � for each input e. In the next section we show how to do this, and at the sametime get a t-out-of-n threshold solution (but still in the \honest but curious" model).4 The honest-but-curious caseThe protocol in this section achieves t-out-of-n sharing. It assumes the \honest but curious"model, in which players do not deviate from the protocol but simply pool together theirdata to try to gain information (in this model we need n > 2t). It also tolerates crashingfaults, i.e. players who suspend their participation in the protocol (in this case we needn > 3t). In the next section we show how to add robustness to this protocol (i.e. toleranceof maliciously faulty players).The di�erence between this protocol and the one in the previous section is that all thesecrets are shared via polynomials (rather than sums), and the multiple � is chosen afresh5

with each execution. The rest of the protocol is similar to the basic case. The protocol isdescribed in detail in Figure 1. On a high-level the protocol goes as follows:� Each player starts with input a share of the secret modulus � (multiplied by a factorof L = n! for technical reasons), via a t-degree polynomial f(z) with free term L�.� In the �rst round of the protocol, the players jointly generate two random t-degreepolynomials g(z) and h(z) with free terms L� and LR, respectively, and a random2t-degree polynomial �(z) with free term 0.� In the second round they reconstruct the 2t-degree polynomial F (z) = f(z)g(z) + e �h(z) + �(z) and recover its free term = F (0) = L2��+ LRe.� Finally, they use the GCD algorithm to compute a; b such that a + be = 1 andset d = aLR + b = e�1 mod �. Each player Pi computes its share of d by settingdi = ah(i) + b.Theorem 1 If all the players carry out the prescribed protocol and n > 2t (n > 3t for thecase of crashing faults) then the protocol in Figure 1 is a secure Modular Inversion Protocolaccording to the De�nition in Section 2.1.Proof Sketch In this proof we assume that N � � = O(pN) (which is true for thecommon case where N is an RSA modulus and � = �(N)). In the general case (where wecan only say that N�� = O(N)), the bounds in the proof below has to be adjusted slightly.Initial Inputs. According to the de�nition, we need to prove that the players startfrom a t-out-of-n secret sharing of the value �. Clearly t + 1 players can interpolate thepolynomial f and recover � from its free term. We need to show that t players have noinformation about �.We show that the distribution of t shares of the secret � with polynomial f(z) is statis-tically indistinguishable from the distribution of t shares that result from sharing the valueN with polynomial f̂(z). We prove this by proving that with high probability there is asharing of N using a polynomial f̂ with integer coe�cients in the same range as f such thatf̂(i) = f(i) for i = 1; : : : ; t. De�ne a t-degree polynomial h(z) such that h(0) = (� �N)Land h(1) = : : : = h(t) = 0. That is,h(z) = tXi=0 h(i) Yj 6=i;j=0;:::;t z � ji� j = L(��N) Yj=1;:::;t z � j�jand the coe�cient of zi is L(��N) XB�f1;:::;tg;jBj=i Qj2B(�j)Qj=1:::;t(�j)Note that because L = n! this value is an integer. It can also be bounded in absolute valueby XB�f1;:::;tg;jBj=iL(��N) � (��N)L ti! � (��N)Lt!i!(t� i)! � (��N)Lt! � 3L2pN6

Inversion Protocol for Honest-but-Curious playersPrivate inputs: Sharing of L� using a t-degree polynomial over the integers.Player Pi has private input fi = f(i), where f(z) = L�+ a1z + : : :+ atzt,and 8j; aj 2 [�L2N;L2N].Public input: prime number e > n, an approximate bound N on �.[Round 1] Each player Pi does the following:1. Choose �i 2R [0 : : :N2], and bi;1; : : : ; bi;t 2R [�L2N3 : : :L2N3],Choose ri 2R [0 : : :N3], and ci;1; : : : ; ci;t 2R [�L2N4 : : :L2N4]Choose �i;1; : : : ; �i;2t 2R [�L2N5 : : :L2N5]2. Set gi(z) = L�i+ bi;1z+ : : :+ bi;tzt, hi(z) = Lri+ ci;1z+ : : :+ ci;tzt, and �i(z) = 0+ �i;1z+: : :+ �i;2tz2t.3. Send to each player Pj the values gi(j); hi(j); �i(j), computed over the integers.[Round 2] Each player Pj does the following:1. Set gj =Pni=1 gi(j), hj =Pni=1 hi(j), and �j =Pni=1 �i(j).(These are its shares of the polynomials g(z) = Pi gi(z), h(z) = Pi hi(z), and �(z) =Pi �i(z).)2. Broadcast the value Fi = figi + ehi + �i[Output] Each player Pi does the following:1. From the broadcast values interpolate the 2t-degree polynomial F (z) = f(z)g(z) + e �h(z) +�(z).2. Using the GCD algorithm, �nd a; b such that aF (0) + be = 1. If no such a; b exist, go toRound 1.3. The inverse of e is d = ah(0) + b. Privately output the share of the inverse, di = ah(i) + b.Figure 1: Computing inverses in the all-honest case
7

The desired polynomial is f̂(z) = f(z)� h(z). Now f̂(0) = LN , its coe�cients are integersin the range [�L2N � 3L2pN : : :L2N + 3L2pN], thus the probability that the coe�cientsare outside the legal range is t 6L2pN2(L2N + 3L2pN) � O(tpN)which is negligible.Correctness. It is easy to see that the protocol computes the right output. Indeedsince all players are honest, the interpolation at step 5 will return as the unique polynomialF (z) a polynomial with integer coe�cients. Thus F (0) = L2��+LRe is an integer and wecan take its GCD with e. If e does not divide �, the probability that GCD(e; F (0)) = 1is roughly 1=e (i.e. the probability that e divides �). Thus it is unlikely that the protocolneeds to be repeated several times. Once we get aF (0) + be = 1, we can re-write it asa(L2��+ LRe) + be = 1Taken mod �, the last equation becomes (aLR+ b)e = 1 mod �, which means that we haved = aLR + b = e�1 mod �. Thus the t-degree polynomial ag(z) + b interpolates to thecorrect value d and the shares di correctly lie on such polynomial. Notice that in order tointerpolate F (z) we need at least 2t+ 1 active players.Simulation of the inversion protocol. We are assuming w.l.o.g. that the simulatorcontrols players Pt+1; : : : ; Pn. For these players the simulator holds initial values f̂i whichresult from a sharing of N (instead of �, see above).For Round 1 of the inversion protocol, the simulator simply follows the same instructionsas the protocol. This results in shared polynomials ĥ(z), ĝ(z) and �̂(z) and shared values�̂ = ĝ(0) and R̂ = ĥ(0). Clearly �̂ and R̂ follow the same distribution as �;R. Notice alsothat, by an argument similar to the one for the sharing of the initial values, the adversaryhas no information about �̂ and R̂.During Round 2 the simulator broadcasts the values F̂ (i) = f̂(i)ĝ(i) + eĥ(i) + �̂(i) (fori = t + 1; : : : ; n). Because the polynomials �(z) and �̂(z) have coe�cients which are oneorder of magnitude larger that f(z)g(z) and f̂(z)ĝ(z), both polynomials F (z) and F̂ (z)follow a distribution which is statistically close to �(z), except for the free term.Indeed the 2t-degree polynomial F̂ (z) interpolating those values has free term equal toL2�̂N + LR̂e (while in the real execution it interpolated to L2��+ LRe.) This is the onlydi�erence between the simulated and the real execution.It is then su�cient to prove that the distributions of these two values are statisticallyclose. We do that in lemma 1.4.1 A crucial lemmaLet � = �1 + : : : + �n where each �i is an integer chosen uniformly at random in theinterval [0::N2]. Let us denote with Pn[N2] the probability distribution of � (i.e. the sumof n independent random variables uniformly distributed in [0::N2]. Similarly let R bedistributed according toPn[N3]. Finally let N be a bound on � (here too for simplicity we8

assume N � � = O(pN)) and e a prime number, relatively prime with �. We assume thate is at most O(N).Lemma 1 Let �; �̂ distributed according to Pn[N2]. Let R; R̂ distributed according toPn[N3]. Consider the following random variables X� = �� + Re and XN = �̂N + R̂e.Then X� and XN are statistically indistinguishable, namelyXx jProb[X� = x]� Prob[XN = x]j < N�cfor some constant c.Proof Sketch We begin the proof with the following fact.Proposition 1 Let x; y be two integers such that GCD(x; y) = 1 and A;B two integerssuch that A < B, x; y < A and B > Ax. Then every integer in the closed interval [xy�x�y + 1; Ax+By � xy + x+ y � 1] can be written as ax+ by where a 2 [0::A] and b 2 [0::B].Proof (Proposition 1.) It is a well known fact from the theory of integer programmingthat any integer larger than xy�x� y can be written as ax+ by with non-negative integersa; b (this is a special instance of the Frobenius problem, see [23] for example).Clearly if z = ax + by with a 2 [0::A]; b 2 [0::B] then z 2 [0::Ax + By]. We will callan integer z 2 [0::Ax+ By] reachable if can be written as z = ax + by with a 2 [0::A] andb 2 [0::B].Note that the interval [0::Ax+By] is symmetric. I.e. if z 2 [0::(Ax+By)=2] is reachablethen z0 = Ax+By � z is also reachable. Thus to prove the Proposition it will be su�cientto prove that any z 2 [xy � x � y + 1::By] is reachable (since By > (Ax+By)=2).Fix z 2 [xy � x� y + 1::By]. Consider the equation with unknown az � ax = 0 mod ysince GCD(x; y) = 1 there exists an unique solution a = zx�1 mod y. Notice that 0 � a <y < A. Then z � ax = by and b � B (since z � By).To prove that b � 0 let us considerb = z � axy � x� 1� x(a+ 1)� 1y � x� 1� xy � 1y � 1y � 1Note that the quantity (1=y) � 1 is strictly greater than �1 this implies that, being ban integer, b � 0.This completes the proof.Consider now the following sets:L = f��+Re j � 2 [0::nN2]; R 2 [0::nN3]gand L̂ = f�̂N + R̂e j �̂ 2 [0::nN2]; R̂ 2 [0::nN3]g9

A consequence of Proposition 1 is that we can bound the intersection of L and L̂ as theinterval [�::�] where � = Ne� e+ 1 and � = n(N2�+N3e)� �e + �+ e� 1.It is very easy to see (by Cherno�'s bounds) that the probability that X� or XN falloutside the interval [�::�] is negligible since both bounds are very far away from the meansof X� and XN .Let � be a negligible quantity upper bounding all the following probabilities; Prob[X� <�]; Prob[X� > �]; Prob[XN < �]; Prob[XN > �] then we have thatXx jProb[X� = x]� Prob[XN = x]j < 4�+ �Xx=� jProb[X� = x]� Prob[XN = x]jso we can focus on the last term.Let x 2 [�::�]. Given a pair �;R such that x = �� + Re we present a mapping thatproduces �̂; R̂ such that x = �̂N + R̂e. That is��� �̂N = (R̂�R)eSince GCD(N; e) = 1, for any given � there exists a unique �̂ 2 [�::�+ e � 1] such that��� �̂N is a multiple of e. Once �xed this �̂ one can then solve for R̂.We are not done however. We need to prove that the probability weight of the pair�̂; R̂ is very close to that of the pair �;R. This is true because the points �; �̂ and R; R̂ are\close enough" relatively to the size of the interval they are drawn out from. Indeedj�� �̂jnN2 � enN2 � 1nNalso jR�R0j = j��(N)� �̂N je = �����(�� �̂)�(N)e + �̂(�(N)�N)e ����� �� ������(N)� nN2pNe ����� � nN2pNSo jR�R0jnN3 � 1pNwhich again is negligible.Remark 2 (Size of shares) Note that the shares di of d = e�1 mod � have order O(N5).If the di's are used as exponents (as in the threshold signature applications we discuss inSection 6), this results in a factor of �ve slowdown during the generation of the signature.However, the shares do not have to be this large. We chose these bounds to make thepresentation and the proof simpler. It is possible to improve (a lot) on those bounds as wediscuss in Section 7. 10

5 A Robust SolutionWe show how to deal with a malicious adversary who may corrupt up to t players and makethem behave in any arbitrary manner. We use some standard techniques like:� Replace the simple secret-sharing of the �rst round with Veri�able Secret Sharing(VSS) a-la-Pedersen [20], to make sure that the players perform correct sharings;� Use error-correcting codes or zero-knowledge proofs to combat malicious players whomay contribute incorrect shares for the reconstruction of the polynomial F (z) inRound 2.A few technical complications arise from the fact that we use secret sharing over the integers.Some are solved using known techniques that were developed for robust and proactive RSA[15, 12, 21, 7], others require some new machinery.5.1 Pedersen's VSS revisitedThe problems that we need to tackle is how to ensure that the secrets are shared correctlyin Round 1 and recovered correctly in Round 2. For the �rst problem, we use a variant ofPedersen's Veri�able-Secret-Sharing protocol [20], adjusted to account for the fact that weshare these secrets over the integers.In Pedersen's scheme the secret and the shares are viewed as \indices" for some cyclicgroup hgi. Hence, there is an e�cient mapping between shares and group elements x 7! gx,and the players use the group operation to verify various properties of the shares. Thereare, however, two problems with using this approach in our setting:� In our setting, it is imperative that the secrets satisfy some equations over the integers,and not just modulo the order of g. (For example, it would be useless if the shares ofd = e�1 mod � would interpolate to d+ ord(g) over the integers.)� Pedersen's protocol does not provide tools to prove that the shared secret is \smallenough", whereas the secrecy of our protocol relies on the fact that we know somebound on the size of the secrets. (For example, if the size of � in = ��+Re is muchlarger than other terms, then clearly reveals information about �.)Overcoming the second problem is easy. Each player simply checks that its shares arebounded in some interval, and then we show that the secret must also be bounded in some(slightly larger) interval. Solving the �rst problem is a little harder. We propose twosolutions to this problem, each with its own advantages and drawbacks:� Work with a group of unknown order. If the order of g is not known, then it wouldbe potentially hard for the dealer to arrange that some relations hold modulo ord(g)but not over the integers. More speci�cally, we show that when Pedersen's protocolis executed over an RSA modulus M = pq, which is a product of two safe primes(p = 2p0 + 1; q = 2q0 + 1 with p; p0; q; q0 all primes), then it is indeed a secure VSSunder the strong-RSA assumption (see below).11

An advantage of this solution is that the modulus M is independent of the bound onthe size of the secrets and shares, and so a smaller M can be used. The drawback isthat we must work in a system where such an RSA modulus of unknown factorizationis available, and that we use the strong-RSA assumption, which is stronger than, say,plain RSA or discrete-log. Still, for the main applications of our result (constructingthreshold versions of the signature schemes described in [17, 9]), these drawbacks donot matter, since those signature schemes already use these special-form RSA moduliand are based on the strong-RSA assumption.� Work with a very large group. Another option would be to make the order of g muchlarger than all the other parameters of the system. This way, if the players verify thatthe size of their shares is \small enough" then any relation that holds modulo ord(g)must also hold over the integers, simply because the numbers involved can never belarge enough to \wrap around" ord(g).It is therefore possible to use Pedersen's original protocol modulo a large prime, pro-vided that all the players check the size of their shares4 and the prime is large enough.Speci�cally, if there are n players, and each player veri�es that its share is smallerthan some known bound B, then it is su�cient to work over a prime p > tntn!B.5.2 The Robust SolutionThus we show the robust solution using a \generic" Pedersen-like VSS protocol PedVSSand then in the following subsections specify the two solutions sketched above. The fullrobust protocol is described in Figure 2. In this description we distinguish between twocases: n > 4t or 3t < n � 4t.When n > 4t we can use error-correcting codes to interpolate the polynomial F (z) (e.g.,using the Berlekamp-Welch algorithm [4] or see for example the appendix in [24]).For the case of 3t < n � 4t we do not have enough points to do error-correction, so weidentify and sieve out the bad shares by having each player Pi proves in zero knowledgethat its value F (i) is the correct one. In the latter case, we need the players to have aspublic input commitments to the coe�cients of the polynomial f(z) (that is used to shareL�), and we use these commitments in the zero-knowledge proofs. The type of commitmentdepends on the speci�c kind of PedVSS we are using so we leave it generic for now.In the description of the protocol we say \use PedVSS to share x with bound B" tomean that the sharing of X is performed using Shamir's secret sharing over the integerswith random coe�cients in the set [0::B].Remark 3 (Sharing a known value) In the robust protocol we use the protocol PedVSSto share either a secret unknown value, or the value 0. The latter is used to randomize theproduct polynomial in the multiplication step.The ZK proof (described in detail in Appendix A) is a 3-round, public-coin, honest-veri�er statistical ZK proof. When this ZK proof is executed in the distributed protocol4Note that in Pedersen's protocol, the shares and secrets are committed to by setting C(x) = gxhr mod Pfor a random r. In our setting, the players would have to check that the \real share" x is in the allowedinterval, but the randomizing element r can be any element in Zp�1.12

above, each player will run it once as the prover. The veri�er's challenge will be jointlygenerated by the other n � 1 servers. It is shown by Canetti et.al. [6] that it is su�cientthat the protocol is only honest-veri�er ZK since each prover runs the protocol against a\virtual" veri�er which is implemented by the other n� 1 players. This virtual veri�er willbe forced to act honestly because a majority of the other players is honest.The security of this protocol will be proven separately for each of the two instantiations ofPedVSS.5.3 The Strong-RSA based solutionFor this solution, we have a public modulus M of unknown factorization, which is a productof two safe primes (M = pq, p = 2p0 + 1, q = 2q0 + 1). For such a modulus, the squaresform a cyclic subgroup of Z�M of order p0q0. We let G;H 2 Z�N to be two random squareswhich generate the squares subgroup and we assume that nobody knows the discrete log ofH with respect to G. The VSS protocol is spelled out in Figure 3.Remark 4 (N versus M) If the value N is already an RSA modulus, product of twostrong primes, then in Robust Protocol it is possible to set M = N . This is indeed the casein most of our applications.The Strong-RSA Assumption. This assumption was introduced in [1] and subsequentlyused in several other works [15, 17, 9]. It conjectures that given a random square G 2 Z�Mthere exists no polynomial time algorithm that can compute H 2 Z�M and an integer x 6= 1such that Hx = G modM .Lemma 2 Under the Strong-RSA assumption, the protocol PedVSS-1 is a VSS against anadversary who corrupts at most t players when n > 2t.Before proving the lemma let us point out the following facts.An old commitment scheme revisited. Consider the following commitment scheme C.The public parameters are an RSA modulus M (product of two safe primes), and randomsquares G;H 2 Z�M . The message space is the set of integers. To commit to an integer �the sender chooses a random integer � in a given interval I (say [�M2;M2], but it's notcrucial) and sends the following value C(�; �) = G�H� mod N . To decommit the senderreveals �; � and the receiver checks that they match the value C(�; �).Lemma 3 Under the assumption that factoring M is hard the scheme described above isan information-theoretically private, computationally binding, commitment scheme.Proof (of Lemma 3.) Let x be the discrete log of H with respect to G, i.e. the uniqueinteger smaller than p0q0 such that H = Gx modM . Because both G;H are generators,then GCD(x; p0q0) = 1.First we prove that the scheme is information-theoretically private. Let c = C(�; �).First of all notice that for all �̂ 2 I such that �̂ = � mod p0q0 we have that c = C(�; �̂).Thus it is enough to prove that for any other integer �0 there exists an unique �0 2 Zp0q0such that c = C(�0; �0). Indeed if G�H� = G�0H�0 modM , then it must be that �+ x� =13

Robust ProtocolPrivate inputs: Sharing of the number L� using a t-degree polynomial over the integers. PlayerPi has private input fi = f(i), where f(z) = L�+ a1z + : : :+ atzt, and 8j; aj 2 [�L2N;L2N]. If3t < n � 4t then Pi also has f̂i = f̂ (i), where f(z) = â0 + â1z + : : :+ âtzt, and 8j; âj 2R ZM .Public input: prime number e > n, and an approximate bound N on �. If 3t < n � 4t Publiccommitments on the coe�cients aj and âj .[Part 1] Each player Pi chooses �i 2R [0 : : :N2], and ri 2 [0::N4], and does the following:1. Use PedVSS to share �i with bound N2 and t-degree polys gi(z) and ĝi(z).2. Use PedVSS to share ri with bound N4 and t-degree polys hi(z) and ĥi(z).3. Use PedVSS to share 0 with bound N6 and 2t-degree polys �i(z) and �̂i(z).Let A be the set of players who were not disquali�ed in Round 1, denote � =Pi2A �i, R =Pi2A ri.Also denote g(z) =Xi2A gi(z); h(z) =Xi2Ahi(z); �(z) =Xi2A �i(z)ĝ(z) =Xi2A ĝi(z); ĥ(z) =Xi2A ĥi(z); �̂(z) =Xi2A �̂i(z)[Part 2] Each player Pj does the following1. Generates its shares of the polynomials h(z); g(z); �(z) by summing the shares that werereceived in Part 1 from players in A.If 3t < n � 4t, also generates its shares of the polynomials ĥ; ĝ; �̂ similarly.2. Calculates Fj = f(j)h(j) + eg(j) + �(j), and broadcasts Fj as its share of the 2t-degreepolynomial F (z) = f(z)h(z) + eg(z) + �(z).Notice that the free term of F (z) is the integer F (0) = L2��+ LRe.[Part 3] We distinguish two cases:1. If n > 4t then the players interpolate over the rationals, using error-correction, the uniquepolynomial F (z) of degree 2t passing through n � t of the broadcasted points, and set =F (0).2. If 3t < n � 4t, each player Pi proves that the value Fi is correct using the subprotocolProve-Correct described in Appendix A).The players interpolate the unique polynomial F (z) of degree 2t passing through the broad-casted points which are proven correct, and set = F (0).[Output]1. Using the GCD algorithm, each player computes two values a; b such that aF (0)+ be = 1. Ifno such a; b exist, return to Part 1.2. Each player Pi privately compute its share of the inverse, di = ah(i) + b.Figure 2: Computing inverses in the malicious case14

PedVSS-1Dealing PhasePublic Input: RSA modulus M (product of two safe primes), two random squares G;H 2 Z�M ,and a bound �.Input for the dealer: A secret � 2 [0::�].1. The dealer chooses �̂ 2R [0::�] and b1; : : : ; bt; b̂1; : : : ; b̂t 2R [�L2M�::L2M�].Sets h(z) = L� + b1z + : : :+ btzt and ĥ(z) = L�̂ + b̂1z + : : :+ b̂tzt.Sends privately to player Pi the values h(i) and ĥ(i) computed over the integers.Broadcasts publicly the valuesC0 = G�H �̂ modM and Cj = GbjH b̂j modM for j = 1; : : : ; t.2. Player Pi checks that Gh(i)H ĥ(i) = tYj=0(Cj)ij modM (1)If the check fails, Pi complains publicly. If more than t players complain the dealer isdisquali�ed.3. If the dealer is not disquali�ed, it reveals the values h(i); ĥ(i) satisfying Eq. (1) for the playersPi who complained at the previous step. If the dealer does not perform this step correctly itis disquali�ed.4. Player Pi checks that the values it received and the values broadcasted by the dealer in theprevious steps are integers bounded in absolute value by tntL2M�. If the check fails, Piexposes its share. If an exposed share is larger than tntL2M� and matches Eq. (1) then thedealer is disquali�ed.aReconstruction Phase1. Each player Pi reveals h(i); ĥ(i). Only the values satisfying Equation 1 will be accepted.Interpolate t+ 1 of those values to reconstruct h(z) over the rationals and output the secret� = h(0).aThis step is not needed for this protocol to be a \secure VSS protocol", see Remark 5.Figure 3: Pedersen's VSS15

�0 + x�0 mod p0q0 and since GCD(x; p0q0) = 1 we have that �0 = x�1(�� �0) + � mod p0q0.Notice that we do not need to compute x�1 mod p0q0 in order to prove this property.Now we prove that if the sender can open the commitment in two di�erent ways, then hemust be able to factor the modulus M with base G. Indeed given c assume that the senderis able to �nd two pairs �; � and �0; �0 with � 6= �0 such that c = C(�; �) = C(�0; �0). Thenas before we have that ��x = �� mod p0q0, where �� = (� � �0) and �� = (�0 � �) 6= 0.We go by cases now.Case 1, assume that �� = 0. Then �� = 0 mod p0q0 which gives a multiple of p0q0allowing immediate factorization of M .Case 2, assume that �� = 1. Then x = �� mod p0q0 which means that we computedthe discrete log of H with respect to G. This means that we can also factor M .Case 3, assume that �� > 1. We can also assume that GCD(��;��) = 1 (since we canremove common divisors from the original relationship). Then we proceed as follows. Let �a random integer in [0::N2] and de�ne H = G�. Note that with non negligible probabilityone has that �� � ��� 6= 0. This implies that with non negligible probability we get amultiple of p0q0, allowing, again, immediate factorization of M .Now we can prove that PedVSS-1 is a VSS protocol.Proof Sketch (of Lemma 2.) First of all, at the end of the protocol even an in�nitelypowerful adversary could not guess the secret better than at random. This is because theadversary sees only t shares on a polynomial of degree t. The polynomial is computedover the integers, but as we argued before (see Theorem 1) the distribution of those shareis statistically close to those of the sharing of any other secret. Also the adversary seesinformation-theoretically private commitments to the coe�cients of the polynomial whichclearly cannot help.Now we prove that at the end of the dealing phase there is an unique t-degree polynomialwith integer coe�cients that interpolates the shares held by the good players, and that thispolynomial will be recovered at reconstruction time. Indeed consider the shares h(i); ĥ(i)held by t+1 good players at the end of a protocol in which the dealer was not disquali�ed.These shares determine two t-degree polynomials h(z); ĥ(z) over the rationals.Let's prove �rst that h(z) must have integer coe�cients. Assume that the ith coe�cientof h(z) is a fraction �� with GCD(�; �) = 1. Notice that the dealer must know �; �. Thenwe have that Bi = G��H which in turn impliesG� = � BiH��now since GCD(�; �) = 1 we have that there exists two numbers a; b such that a�+ b� = 1so we have that G = Ga�+b� = Gb� � BiH�a� = �Gb� BiH�a��i.e. we solve the Strong-RSA assumption with basis G.Now we need to prove that any value accepted at reconstruction time must lie on thosepolynomials. Indeed assume that a player Pj reveals values �j ; �̂j satisfying Equation (1)but such that h(j) 6= �j (as an integer). Notice that Pj may be a good player who received16

such values from the dealer or a bad player who received the good values from the dealer butis trying to prevent reconstruction by contributing bad values. In any case we prove thatthis contradicts the security of the commitment C. Indeed the pairs h(i); ĥ(i) and �i; �̂iare two di�erent openings of the commitment C(h(i); ĥ(i)) which can be publicly computedfrom the commitments Bj (the right-end side of Equation (1)). Thus either the bad dealeror the bad player must be able to break C.The reduction from the security of PedVSS-1 (over the integers) to Strong-RSA follows anapproach presented �rst in [15].Remark 5 (Share size check) The security proof of PedVSS does not require that play-ers check the size of their shares in Step 4. This check however guarantees the good playersthat the shared secret is bounded by t2ntL3M� (since the Lagrange interpolation formulatells us that the secret can be written as the linear combination of t+ 1 shares with coe�-cients all smaller than L).Security Proof of the Whole Protocol. Now we can prove the security of thewhole protocol.Theorem 2 Under the Strong-RSA assumption, using PedVSS-1, if the dealer is honestand n > 3t, then Robust Protocol is a secure Modular Inversion Protocol (accordingto the De�nition in Section 2.1) in the presence of a malicious adversary who corrupts atmost t players.Proof Sketch We discuss only the case n > 4t. In the �nal paper we will cover the case3t < n � 4t.For the case n > 4t the proof of the robust solution follows very closely the proof ofthe honest-but-curious case. The major di�erence lies on the fact that the adversary maychoose its �i's outside the range [0::N2]. But, as we said in Remark 5 in Section 5.1, theadversary will pass the PedVSS only if j�ij is O(N2M). The �nal � will then also be O(N3).In order to compensate for the larger range of � it is necessary to increase the range of Rand this is why we require the ri's to be chosen in the interval [0::N4]. It is not hard to seethat with these parameters, the proof of Lemma 1 carries through all the way to the end.5.4 The Discrete-Log based solutionAn alternative approach would be to work with a group of known, but very large, order. Thedrawback of this approach is that the size of the shares is quite large, but on the positiveside we rely on more standard intractability assumptions as we do not need safe primesor the strong-RSA assumption (but simply assuming that discrete logarithms modulo aprime are hard to compute). The protocol is described in �gure 4 and it is a very simplegeneralization of Pedersen's VSS adapted to the case when the underlying secret sharing isperformed over the integers. 17

PedVSS-2Dealing PhasePublic Input: A bound A, a bound �, a prime p such that p > (1 + tnt)LB (where B = LA�),H;G 2 Z�p .Input for the dealer: A secret � 2 [0::�].1. The dealer chooses �̂ 2R [0::�] and b1; : : : ; bt; b̂1; : : : ; b̂t 2 [�LB::LB].Sets h(z) = L� + b1z + : : :+ btzt and ĥ(z) = L�̂ + b̂1z + : : :+ b̂tzt.Sends privately to player Pi the values h(i) and ĥ(i) computed over the integers.Broadcasts publicly the values C0 = G�H�̂ mod p and Cj = GbjH b̂j mod p for j = 1; : : : ; t.2. Player Pi checks that Gh(i)H ĥ(i) = tYj=0(Cj)ij mod p (2)If the check fails, Pi complains publicly. If more than t players complain the dealer isdisquali�ed.3. If the dealer is not disquali�ed, it reveals the values h(i); ĥ(i) satisfying Eq. (1) for the playersPi who complained at the previous step. If the dealer does not perform this step correctly itis disquali�ed.4. Player Pi checks that the values it received and the values broadcasted by the dealer inthe previous steps are integers bounded by (1 + tnt)LB. If the check fails, Pi exposes itsshare. If an exposed share is larger than (1 + tnt)LB and matches Eq. (2) then the dealer isdisquali�ed.aReconstruction Phase1. Each player Pi reveals h(i); ĥ(i). Only the values satisfying Equation 2 will be accepted.Interpolate t+ 1 of those values to reconstruct h(z) over Zp and output the secret � = h(0).aAs in Ped-VSS, this step is not needed for this protocol to be a \secure VSS protocol", see Remark 5.Figure 4: Pedersen's VSS-218

6 ApplicationsThe main application of our result is the construction of threshold variants for two recentlyproposed signature schemes [17, 9]. Let us briey recall the concept of threshold cryptog-raphy (which originates in a paper by Desmedt [10]). In a threshold signature scheme nparties hold a t-out-of-n sharing of the secret key SK for a signature scheme. Only when atleast t + 1 of them cooperate they can sign a given message. It is very important howeverthat the computation of such signature is performed without exposing any other informationabout the secret key; in particular the players cannot reconstruct SK and use the signingalgorithm, but must use their shares implicitly in a communication protocol which outputsthe signature. A large body of research has been done on threshold signature schemes: forlack of space we refer the reader only to two literature surveys [11, 16].Threshold GHR Signatures. In [17] Gennaro, Halevi and Rabin present a newsignature scheme which is secure under the Strong-RSA assumption. The scheme works asfollows. The public key of the signer is an RSA modulus N , product of two safe primes p; q,and a random element s 2 Z�N . To sign a messagem, the signer �rst hashes it using a suitablehash function H to obtain e = H(m) and then computes �(m) such that �(m)e = s mod N .We refer the reader to [17].Using our Modular Inversion Protocol, we can create a threshold version for the GHRscheme as follows. A trusted dealer can initialize the system by choosing N and sharing�(N) as needed in our solution(s) (either the honest-but-curious or the robust one dependingon the model). For a reason that will be soon apparent, the dealer also chooses s as follows:pick a random square s0 2 Z�N and compute s = sL20 mod N and make s0; s public.Then for each message m to be signed, the players publicly compute e = H(m) andperform an execution of the inversion protocol, to obtain shares di of d = e�1 mod �(N).Recall that each di is the point ah(i)+b on a t-degree polynomial ah(z)+b whose free termis d. It follows then that for any subset T of t + 1 shares we can writed =Xi2T �i;T � diwhere �i;T are the appropriate Lagrange interpolation coe�cients. Notice that the aboveequation is taken over the rationals, so �i;T may be fractions. However because we arealways interpolating integer points in the set f1; : : : ; ng we have that L2 � �i;T is always aninteger. The protocol is concluded by having each player reveal si = sdi0 . Then�(m) = sd = sL2Pi2T �i;T �di0 = Yi2T sL2��i;Tiand the exponents are all integers.In the case of malicious players, a zero-knowledge proof must be added that si is thecorrect value. Notice that if n > 4t we can still use error-correcting codes inside theinversion protocol, but we do not know how to do error-correction \in the exponent" forthe si's and thus the ZK proof for this step is required also when n > 4t. An e�cientZK proof similar to Prove-Correct (see Appendix A) can be implemented using the publicinformation generated by the inversion protocol. More speci�cally, the inversion protocolgenerates public commitments Ci = GdiH d̂i to the di's. When Pi reveals si = sdi0 it proves19

that the discrete log of si in base s0 is the same as the opening he knows of the commitmentCi. A couple of remarks are in order. Because of the way we generate s it is obvious thatany message m whose hash value is in the set f1; : : : ; ng can be forged, so we need torequire that H(m) > n for all messages. This is not a problem as [17] already assumes thate = �(N). Also in one of the variations presented in [17] the hash function is randomized,i.e. e = H(m; �) where � is a random string which is then attached to the signature forveri�cation purpose. In this case the inversion protocol must be preceded by a coin ippingprotocol by the n players to generate �.Threshold Cramer-Shoup Signatures. In [9] Cramer and Shoup presented thefollowing signature scheme. The signer public key is N (the product of two safe primesp; q), two random squares h; x 2 Z�N and a random prime e0 su�ciently long (say 160 bits).To sign a message m, the signer generates a new prime e 6= e0 (also of length 160 bits) anda random square y0 2 Z�N . Two values x0; y are then computed asx0 = y0e0hH(m) mod N and y = �xhH(x0)�1=e mod Nwhere H is a collision-resistant hash function. The signature is (e; y; y0)A threshold version of the Cramer-Shoup signature scheme is obtained in the sameway as the threshold GHR scheme, since the only part that involves the secret key is thecomputation of y (here also, for the same reason as above, the dealer must choose h; x ash = hL20 mod N x = xL20 mod N , and make public the values h0; x0). The only di�erence isthat here the prime e must be generated by the players instead of being publicly computedvia a hash function, and the requirement is that the signers never use the same prime e fortwo di�erent messages. This can be done either by having the players together generaterandomness and use it for prime generation, or by having one player choose e, and theothers just check that it was never used before. (For the latter solution the players needto keep state, and there must be some protocol to keep this state \synchronized" betweendi�erent players).7 ConclusionsWe presented new protocols to compute a sharing of the inverse of a public integer emodulo a shared secret �. We also presented applications to construction of thresholdvariants for two newly proposed signature schemes. Our result was constructed with thesespeci�c applications in mind, and we focused on protocols which would minimize the roundcomplexity (i.e. the interaction between servers). This is the main improvement withrespect to previous solutions from [5, 14].We conclude with some remarks.ANote on the Assumptions Used. Of the two robust solutions presented in this paper,the one based on Strong-RSA is the more natural one to use for the applications presentedin Section 6. Indeed in those scenarios we already require the Strong-RSA assumption andthe generation of \safe" primes. We would like to stress however that the Strong RSAassumption and the generation of safe primes is needed only for this variant of the protocol.20

As we mentioned before, by using Pedersen's VSS over a large prime �eld it is possible toconstruct a robust Modular Inversion Protocol based only on the Discrete Log assumption.That is, it is possible to state and prove an analogous to Theorem 2 assuming only thatcomputing discrete logs is hard.A Note on E�ciency. To simplify the presentation, we did not focus on keeping thesize of the integers used in our computations as small as possible. It is however possible toreduce the size of the integers: this is particularly important for the share di's which areused as exponents in our threshold signature applications.The main reason for the increase in size of the integers is that our proofs use logNas our security parameter (i.e. we de�ne a quantity to be negligible if it is smaller than1=N). If instead we were to choose a di�erent security parameter k (and de�ne negligibleanything smaller than 2�k), then part of the growth in the size of the shares would bein multiplicative factors of 2k rather than N . In particular the real bound on the size ofthe shares di is O(N223k) for the honest-but-curious case, and O(N224k) for the maliciousadversary case. For reasonable choices of the parameters (say k = 100 and logN = 1000)this is even less that O(N3), so the threshold signature protocols proposed in Section 6 areslower by less than a factor of 3 than the centralized one.It would be interesting to come up with di�erent protocols (or proof techniques for ourprotocol) that further reduce this size.On the Trusted Dealer. Throughout the paper we implicitly assumed that the input forour protocols (i.e., the sharing of �) was generated by a trusted dealer. In some cases thisassumption can be eliminated by having the players generate � cooperatively. For example,for the applications in which � = �(N) for an RSA modulus N we can use the �rst part ofthe Boneh-Franklin result [5] to have the players jointly generate N and share �(N) amongthem. Notice that [5] cannot be used to generate a product of two safe primes, so in thiscase we must use the discrete-log based robust solution.Acknowledgment. We would like to thank Don Coppersmith for helpful discussions.We also thank the Eurocrypt committee for their suggestions and comments.References[1] N. Bari�c, and B. P�tzmann. Collision-free accumulators and Fail-stop signatureschemes without trees. In Advances in Cryptology - Eurocrypt '97, LNCS vol. 1233,Springer, 1997, pages 480-494.[2] J. Bar-Ilan, and D. Beaver. Non-Cryptographic Fault-Tolerant Computing in a Con-stant Number of Rounds. In Proceedings of the ACM Symposium on Principles ofDistributed Computation, pp.201{209, 1989.[3] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Noncryp-tographic Fault-Tolerant Distributed Computations. 20th ACM Symposium on theTheory of Computing, pp.1{10, ACM Press, 1988.[4] E. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent4,633,470. 21

[5] D. Boneh and M. Franklin. E�cient Generation of Shared RSA Keys. In Advancesin Cryptology - Crypto '97, LNCS vol. 1294, Springer, 1997, pages 425-439. Extendedversion available from http://crypto.stanford.edu/~dabo/pubs.html[6] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Adaptive Security forThreshold Cryptosystems. In Advances in Cryptology - Crypto '99, LNCS vol. 1666,Springer, 1999, pages 98-115.[7] D. Catalano and R. Gennaro. New E�cient and Secure Protocols for Veri�able Signa-ture Sharing and Other Applications. In Advances in Cryptology - Crypto '98, LNCSvol. 1462, Springer, 1998, pages 105-120.[8] D. Chaum, C. Crepeau, and I. Damgard. Multiparty Unconditionally Secure Protocols.20th ACM Symposium on the Theory of Computing, pp.11{19, ACM Press, 1988.[9] R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assumption.To appear in the Proceedings of the 6th ACM Conference in Computer and Commu-nication Security, 1999.[10] Y. Desmedt. Society and group oriented cryptography: A new concept. In CarlPomerance, editor, Advances in Cryptology{CRYPTO'87, Lecture Notes in ComputerScience Vol. 293, pp. 120{127, Springer-Verlag, 1988.[11] Y.G. Desmedt. Threshold cryptography. European Transactions on Telecommunica-tions, 5(4):449{457, July 1994.[12] Y. Frankel, P. Gemmell, P. Mackenzie, and M. Yung. Optimal Resilience ProactivePublic-Key Cryptosystems. 38th IEEE Symposium on the Foundations of ComputerScience, pp.384{393, IEEE Computer Society Press, 1997.[13] Y. Frankel, P. Gemmell, and M. Yung. Witness-based Cryptographic Program Check-ing and Robust Function Sharing. 28th ACM Symposium on the Theory of Computing,pp.499{508, ACM Press, 1996.[14] Y. Frankel, P. Mackenzie, and M. Yung. Robust E�cient Distributed RSA-Key Gen-eration. In STOC 1998, pp.663{672.[15] E. Fujisaki and T. Okamoto. Statistical Zero-Knowledge Protocols to Prove Modu-lar Polynomial Relations. In Advances in Cryptology - Crypto '97, LNCS vol. 1294,Springer, 1997, pages 16-30.[16] P. Gemmell. An Introduction to Threshold Cryptography. RSA Laboratories Crypto-Bytes, Vol.2, No.3, Winter 1997.[17] R. Gennaro, S. Halevi and T. Rabin. Secure Hash-and-Sign Signatures without theRandom Oracle. In Advances in Cryptology - Eurocrypt '99, LNCS vol. 1592, Springer,1999, pages 123-139.[18] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and e�cient sharing ofRSA functions. Crypto'96, pp.157{172, Lecture Notes in Computer Science vol.1109,Springer-Verlag, 1996. 22

[19] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. 19th ACMSymposium on Theory of Computing, pp.218{229, ACM Press, 1987.[20] T. Pedersen. Non-interactive and information-theoretic secure veri�able secret sharing.Crypto'91, pp.129-140, Lecture Notes in Computer Science vol.576, Springer-Verlag,1992.[21] T. Rabin. A Simpli�ed Approach to Threshold and Proactive RSA. Crypto'98, pp.89{104, Lecture Notes in Computer Science vol.1462, Springer-Verlag, 1998.[22] R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature andPublic Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120{126[23] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons. 1986.[24] M. Sudan. E�cient Checking of Polynomials and Proofs and the Hardness of Ap-proximation Problems. Lecture Notes in Computer Science, vol.1001, Springer-Verlag,1995.A The proof of share correctnessIn this Appendix we show only the ZK correctness proof for the solution based on Strong-RSA. For the other version of the robust protocol (the one based on discrete-log), a similar,simpler, protocol can be used as described in the �nal version.In this case we assume that the public commitments to the sharing coe�cients of � isperformed using the committment scheme based on factoring described above. That is thepublic input of the protocol includes the values Aj = GajH âj modM .The problem facing the players in Part 3, Step 2 of Robust Protocol can then be ab-stracted as follows. We have public values A = GaH â, B = GbH b̂, C = GcH ĉ and e. Aplayer P knows a; â; b; b̂; c; ĉ, it publishes a value F , and needs to prove that F = ab + ec(in Robust Protocol each player Pi has to perform this task with a = f(i); â = f̂ (i),b = g(i); b̂ = ĝ(i), c = g(i); ĉ = ĝ(i); we are not considering the randomizers �(i); �̂(i)for simplicity.)Notice that the problem arises because P has to open a value that contains the productab of two committed values. We solve the problem by having P publish a new commit-ment D = GabH� to ab and prove in zero-knowledge that it is correct, and then open thecommitment DCe = Gab+ecH�+eĉ.The protocol described in Figure 5 works for the case in which we use the robust solutionbased on the Strong-RSA assumption and assumes thatM is the product of two safe primes.The protocol in step 2 of Prove-Correct is a honest-veri�er, statistical ZK proof of knowl-edge of the openings of the commitments A;B;D and simultaneously proves that the open-ing of D is the product of the opening of A and B.The extraction works using a technique due to Fujisaki and Okamoto [15] and it assumesthat the prover is not able to solve the Strong-RSA assumption.The proof is statistical ZK for the following reason. Notice that in our application theproduct ab is O(N4). By choosing the original randomizers in the set [�N6::N6] we make23

Prove-CorrectPrivate input for P : a; â; b; b̂; c; ĉ.Public Input: RSA modulus M , G;H 2 Z�M as above. A = GaH â, B = GbH b̂, G = GcH ĉ, andF .Goal: Prove that F = ab+ ec.1. P chooses a random � 2 [�M2;M2] and publishes D = GabH� .2. P proves in zero-knowledge (to a veri�er V) that D is correct w.r.t. A;B as follows(a) P chooses �; �̂; �; �̂; ̂ at random in [�M6;M6], and send to V the valuesM1 = G�H�̂,M2 = G�H �̂, M3 = B�H ̂ .(b) V chooses a random d in [0;M] and sends it to P .(c) P answers with the following values x = �+da, x̂ = �̂+dâ, z = ̂+d(��b̂a), y = �+db,ŷ = �̂ + db̂.(d) V accepts if GxH x̂ = M1Ad, BxHz = M3Dd, GyH ŷ =M2Bd3. P reveals f = ab+ec and f̂ = �+eĉ. The value is accepted if and only ifGfH f̂ = DCe modMFigure 5: How to prove that F = ab+ ecsure that the Prover's answers in step 2c are statistically indistinguishable from randomnumbers in that interval. Details will appear in the �nal paper.

24

