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Abstract

BGV-style homomorphic encryption schemes over polynomial rings, rely for their security on rings
of very large dimension. This large dimension is needed because of the large modulus-to-noise ratio in
the key-switching matrices that are used for the top few levels of the evaluated circuit. However, larger
noise (and hence smaller modulus-to-noise ratio) is used in lower levels of the circuit, so from a secu-
rity standpoint it is permissible to switch to lower-dimension rings, thus speeding up the homomorphic
operations for the lower levels of the circuit. However, implementing such ring-switching is nontrivial,
since these schemes rely on the ring algebraic structure for their homomorphic properties.

A basic ring-switching operation was used by Brakerski, Gentry and Vaikuntanathan, over polyno-
mial rings of the form Z[X]/(X2n + 1), in the context of bootstrapping. In this work we generalize and
extend this technique to work over any cyclotomic ring and show how it can be used not only for boot-
strapping but also during the computation itself (in conjunction with the “packed ciphertext” techniques
of Gentry, Halevi and Smart.)

Note: A later version of this work, with a substantially different transformation, appears in SCN 2012.
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1 Introduction

The last year has seen a rapid advance in the state of fully homomorphic encryption; yet despite these
advances the existing schemes are still too inefficient for most practical purposes. In this paper we make
another step forward in making such schemes more efficient. In particular we present a technique to reduces
the dimension of the ring needed for homomorphic computation of the lower levels of a circuit. Our tech-
niques apply to homomorphic encryption schemes over polynomial rings, such as the scheme of Brakerski
et al. [6, 7, 5], as well as the variants due to Lòpez-Alt et al. [15] and Brakerski [4].

The most efficient variants of all these schemes work over polynomial rings of the form Z[X]/F (X),
and in all of them the ring dimension (which is the degree of F (X)) must be set high enough to ensure secu-
rity: To be able to handle depth-L circuits, these schemes must use key-switching matrices with modulus-to-
noise ratio of 2Ω̃(L·polylog(λ)), hence the ring dimension must also be Ω̃(L · polylog(λ)) (even if we assume
that ring-LWE is hard to within fully exponential factors).1 In practice, the ring dimension for moderately
deep circuits can easily be many thousands. For example, to be able to evaluate AES homomorphically,
Gentry et al. used in [14] circuits of depth L ≥ 50, with corresponding ring-dimension of over 50000.

As homomorphic operations proceed, the noise in the ciphertext grows (or the modulus shrinks, if we
use the modulus-switching technique from [7, 5]), hence reducing the modulus-to-noise ratio. Consequently,
it becomes permissible to start using lower-dimension rings in order to speed up further homomorphic
computation. However, in the middle of the computation we already have evaluated ciphertexts over the
big ring, and so we need a method for transforming these into small-ring ciphertexts that encrypt the same
thing. Such a “ring switching” procedure was described by Brakerski et al. [5], in the context of reducing
the ciphertext-size prior to bootstrapping. The procedure in [5], however, is specific to polynomial rings
of the form R2n = Z[X]/(X2n−1

+ 1), and moreover by itself it cannot be combined with the “packed
evaluation” techniques of Gentry et al. [12]. Extending this procedure is the focus of this work.

1.1 Our Contribution

In this work we present two complementary techniques:

• We extend the procedure from [5] to any cyclotomic ring Rm = Z[X]/Φm(X) for a composite m.
This is important, since the tools from [12] for working with “packed” ciphertexts require that we
work with an odd parameter m. For m = u · w, we show how to break a ciphertext over the big
ring Rm into a collection of u = m/w ciphertexts over the smaller ring Rw = Z[X]/Φw(X), such
that the plaintext-polynomial encrypted in the original big-ring ciphertext can be recovered as a simple
linear function of the plaintext-polynomials encrypted in the smaller-ring ciphertexts.

• We then show how to take a “packed” big-ring ciphertext that contains many plaintext elements in its
plaintext slots, and distribute these plaintext elements among the plaintext slots of several small-ring
ciphertexts. If the original big-ring ciphertext was “sparse” (i.e., if only few of its plaintext slots were
used), then our technique yields just a small number of small-ring ciphertexts, only as many as needed
to fit all the used plaintext slots.

The first technique on its own may be useful in the context of bootstrapping, but it is not enough to
achieve our goal of reducing the computational overhead by switching to small-ring ciphertexts, since we

1The schemes from [5, 4] can replace large rings by using higher-dimension vectors over smaller rings. But their most efficient
variants use big rings and low-dimension vectors, since the complexity of their key-switching step is quadratic in the dimension of
these vectors.
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still need to show how to perform homomorphic operations on the resulting small-ring ciphertexts. This is
achieved by utilizing the second technique. To demonstrate the usefulness of the second technique, consider
the application of homomorphic AES computation [14], where the original big-ring ciphertext contains only
16 plaintext elements (corresponding to the 16 bytes of the AES state). If the small-ring ciphertexts has 16 or
more plaintext slots, then we can convert the original big-ring ciphertext into a single small-ring ciphertext
containing the same 16 bytes in its slots, then continue the computation on this smaller ciphertext.

1.2 An Overview of the Construction

Our starting point is the polynomial composition technique of Brakerski et al. [5]. When m = u · w then
a polynomial of degree up to m − 1, a(X) =

∑m−1
i=0 aiX

i, can be broken into u polynomials of degree up
to w − 1 by splitting the coefficients of a according to their index modulo u. Namely, denoting by a(k) the
polynomial with coefficients ak, ak+u, ak+2u, . . ., we have

a(X) =
u−1∑
k=0

w−1∑
j=0

ak+ujX
k+uj =

u−1∑
k=0

Xk
w−1∑
j=0

ak+ujX
uj =

u−1∑
k=0

Xka(k)(X
u). (1)

We note that this “very syntactic” transformation (of splitting the coefficients of a big-ring polynomial into
several small-ring polynomials) has the following crucial algebraic properties:

1. The end result is a collection of “parts” a(k), all from the small ring Rw (which is a sub-ring of the
big ring Rm, since w|m).

2. Recalling that f(x) 7→ f(xu) is an embedding of Rw inside Rm, we have the property that the
original a can be recovered as a simple linear combination of (the embedding of) the parts a(k).

3. Moreover the transformation T (a) =
⟨
a(0), . . . , a(u−1)

⟩
is linear, and as such it commutes with the

linear operations inside the decryption formula of BGV-type schemes: If s is a big-ring secret key and
c is (part of) a big-ring ciphertext, then decryption over the big ring includes computing a = s·c ∈ Rm

(and later reducing a mod q and mod 2). Due to linearity, the parts of a can be expressed in terms of
the tensor product between the parts of s and c. Namely, T (s · c) is some linear function (over the
small ring Rw) of T (s)⊗ T (c).

In addition to these algebraic properties, in the case considered in [5] where m,w are powers of two, it turns
out that this transformation also possess the following geometric property:

4. If a is a low-norm element in Rm, then all the parts a(k) in T (a) are low-norm elements in Rw.

The importance of this last property stems from the fact that a valid ciphertext in a BGV-type homomorphic
encryption scheme must have a low noise, namely its inner-product with the unknown secret key must be a
low-norm polynomial. Property 3 above is used to convert a big-ring ciphertext encrypting a (relative to a
big-ring secret key s) into a collection of “syntactically correct” small-ring ciphertexts encrypting the a(k)’s
(relative to the small-ring secret key T (s)), and Property 4 is used to argue that these small-ring ciphertexts
are indeed valid.

When attempting to apply the same transformation for m,w that are not powers of two, it turns out that
the algebraic properties must all still hold, but the geometric property may not. One plausible solution is
to find a different transformation T (·) for breaking a big-ring element into a vector of small-ring elements,
that has all the properties 1-4 above, even when m,w are not powers of two. In the current work, however,
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we stick to the same transformation T (·) as in [5], and address the problem with the geometric property by
“lifting” everything from the big ring Rm = Z[X]/Φm(X) to the even bigger ring Cm = Z[X]/(Xm − 1),
using techniques similar to [12, 9].

The reason that lifting to Cm helps, is that over the bigger ring Cm, the linear combination from Equa-
tion (1) is in fact a “direct sum”, in the sense that every coefficient of the left-hand side comes from exactly
one of the terms on the right. Thus if the result is a low-norm polynomial then all the summands must also
be low-norm polynomials, which is what we need.2

A Key-Switching Optimization. One source of inefficiency in the ring-switching procedure of Brakerski
et al. [5] is that using the tensor product T (s)⊗T (c) amounts essentially to having u small-ring ciphertexts,
each of which is a dimension-u vector over the small ring. Brakerski et al. point out that we can use key-
switching/dimension-reduction to convert these high dimension ciphertexts into low-dimension ciphertexts
over the small ring, but processing u ciphertexts of dimension u requires work quadratic in u. Instead, here
we describe an alternative procedure that saves a factor of u in running time:

Before using T (·) to break the ciphertext into pieces, we apply key-switching over the big ring to get
a ciphertext with respect to another secret key that happens to belong to the small ring Rw (which we note
again is a sub-ring of Rm). The transformation T (·) has the additional property that when applied to a small-
ring element s′ ∈ Rw ⊂ Rm, the resulting vector T (s′) over Rw has just a single non-zero element (namely
s′ itself). Hence T(s′)⊗T (c) is the same as just s′ ·T (c), and this lets us work directly with low-dimension
ciphertexts over the small ring (as opposed to ciphertexts of dimension u). This is described in Section 3.1,
where we prove that key-switching into a key from the small subring is secure as long as ring-LWE [16] is
hard in that small subring.

Packed Ciphertexts. As sketched so far, the ring-switching procedure lets us convert a big-ring ciphertext
encrypting a polynomial a ∈ Rm into a collection of u′ small-ring ciphertexts encrypting the parts a(k) ∈
Rw. However, coming in the middle of homomorphic evaluation, we may need to get small-ring ciphertexts
encrypting things other than the a(k)’s. Specifically, if the original polynomial a encodes several plaintext
elements in its plaintext slots (as in [19, 12]), we may want to get encryption of small-ring polynomials that
encode the same elements in their slots.

We note that the plaintext elements encoded in the polynomial a ∈ Rm are the evaluations a(ζi) where
the ζi’s are primitive m-th roots of unity in some extension field F2d . (Equivalently, the evaluations a(ζi)
can also be described as a mod pi, where pi is some prime ideal in the ring Rm — specifically the ideal
generated by {2, X − ζi}. Noting that these prime ideals are exactly the factors of 2 in Rm, this evaluation
representation over GF (2d) is nothing more than Chinese-Remaindering over the prime factors of 2 in Rm.)

Similarly, the plaintext elements encoded in a polynomial b ∈ Rw are the evaluations b(τj) with the
τj’s are primitive w-th roots of unity (equivalently the residues of b relative to the prime ideal factors of 2
in Rw). Our goal, then, is to decompose a big-ring ciphertext encrypting a into small-ring ciphertexts
encrypting some bt’s, such that for every i there are some t, j for which bt(τj) = a(ζi).

To that end, we interpret Equation (1) as expressing the value of a at an arbitrary point X as a linear
combination of the values of the a(k)’s at the point Xu (with coefficients 1, X,X2, . . . , Xu−1). Observing
that if ζ in an m-th root of unity then τ = ζu is a w-th root of unity, we thus obtain a method of expressing
the values of a in the m-th roots of unity as linear combinations of the values of the a(k)’s in the w-th
roots of unity. In Lemma 6 in Section 4 we show how to express, under some conditions on m and w, the

2In the power-of-two setting considered in [5], the same “direct sum” argument can be applied directly in the big ring R2n ,
hence they do not need the “lifting” technique.
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coefficients of the linear combination from Equation (1) as (low norm) polynomials in the τj’s. This allows
us to compute the encryption of the bt’s that we seek as low-weight linear combination of the encryption of
the a(k)’s that we obtained before.

A bird-eye view of this last transformation is that the linear transformation T (a) that we used to break
the plaintext big-ring element into a vector of small-ring parts has the side-effect of inducing some linear
transformation (over F2d) on the contents of the plaintext slots. Hence after we apply T , we compute
homomorphically the inverse linear transformation, thereby recovering the original content.

2 Notation and Preliminaries

Below we define the various algebraic structures that we need for this work. In this paper we will be utilizing
various rings at different points, all will be associated to rings of roots of unity. Below let m, q be arbitrary
positive integers. Let Φm(X) denote the m’th cyclotomic polynomial (i.e., Φm(X) =

∏
i∈(Z/mZ)∗(X −

ζim), where ζm is the complex primitive m’th root of unity, ζm = e2πi/m). Recalling that Φm is an integer
polynomial, we define the following rings:

Rm = Z[X]/Φm(X), Cm = Z[X]/(Xm − 1)
Rm,q = Z[X]/(Φm(X), q), Cm,q = Z[X]/(Xm − 1, q)

We will be interested in cyclotomic rings for a composite m = u · w.

The size of polynomials. Throughout this work we frequently refer to “low norm polynomials”. The
norm that we use to measure the size of polynomials is the l2 norm of their coefficient vectors, i.e. for a

polynomial f we set norm(f) =
√∑

f2
i . (Most of our treatment is not very sensitive to the choice of the

particular norm function.) We informally say that a polynomial in Rm,q or Cm,q has low norm when its
norm is much smaller than the parameter q.

The ring constant cm. We sometime need to switch back and forth between Rm,q and Cm,q while main-
taining “low norm” polynomials. For every integer m there exists a constant cm that bounds the increase in
norm due to reduction modulo Φm(X). Namely, for every polynomial f of degree up to m− 1 is holds that
norm(f mod Φm) ≤ cm · norm(f).

Empirically, the constants cm for the parameters m that we work with is rather small (ranging between
2 and 50 for typical values). But in principle for very smooth m’s the constant cm can be super-polynomial
in m. For the rest of the paper we always assume that our parameters are chosen so that q ≫ cm, so that
we can take “low norm” polynomials in Cm and reduce them modulo Φm without increasing the norm too
much (relative to q). Note that ring constant cm is different, but related to, the associated ring constant from
[8, 12].

2.1 RLWE-based BGV Cryptosystems

Below and throughout this work we denote by [z]q the reduction of the integer z modulo the positive integer
q into the symmetric interval (−q/2, q/2). In our initial ring-LWE-based BGV cryptosystem, secret keys
and ciphertexts are 2-vectors over Rm,q for some odd system parameter q, and moreover the secret key has
the form s = (1, s) where s ∈ Rm is a low-norm polynomial (e.g., with coefficients in {−1, 0, 1}). The
native plaintext space for our initial BGV scheme will be Rm,2, namely binary polynomials modulo Φm(X).
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A valid ciphertext c = (c0, c1) ∈ (Rm,q)
2 that encrypts the plaintext polynomial a ∈ Rm,2 with respect to

s = (1, s) satisfies the equality (over Rm)

[⟨c, s⟩]q = [c0 + s · c1]q = a+ 2e, (2)

for some low-norm polynomial e ∈ Rm. Note that by [c0+s ·c1]q we mean reducing each of the coefficients
of the polynomial c0 + s · c1 ∈ Rm into the interval (−q/2, q/2). Decryption is then just computing
[c0 + s · c1]q, then reducing modulo 2 to recover the plaintext polynomial a.

Throughout the paper we will switch back and forth between different rings. We will maintain the
invariant that valid ciphertexts always satisfy Equation (2), but the ring over which this equation is evaluated
(specifically the meaning of s · c1) will vary. In the input to the ring-switching procedure we will have
a ciphertext where that equality holds over Rm, at the end we will have the output ciphertexts for which
the equality holds over Rw, and in various intermediate points we will have that equality holding over Cm

or Cw.

2.2 Plaintext Arithmetic

Following [19, 5, 12, 13, 14] we consider plaintext polynomials a ∈ Rm,2 as encoding vectors of plaintext
elements from some finite field F2d , where d is the order of 2 in the group (Z/mZ)∗. (This implies that
d divides ϕ(m), and also that F2d contains primitive m-th roots of unity.) Denoting ℓ = ϕ(m)/d, we
can identify polynomials in Rm,2 with ℓ-vectors of elements from F2d . The specific mapping between
polynomials and vectors that we use is as follows:

Consider the quotient group (Z/mZ)∗/ ⟨2⟩ (which has exactly ℓ elements), and fix a specific set of
representatives for this quotient group, Tm = {t1, t2, . . . , tℓ} ⊆ (Z/mZ)∗, containing exactly one element
from every conjugacy class in (Z/mZ)∗/ ⟨2⟩.3 Also fix a specific primitive m-th root of unity ζ ∈ F2d , and
we identify each polynomial a ∈ Rm,2 with the ℓ-vector consisting of a(ζt) for all t ∈ Tm:

a ∈ Rm,2 ←→
⟨
a(ζt1), . . . , a(ζtℓ)

⟩
∈ (F2d)

ℓ.

Showing that this is indeed a one-to-one mapping is a standard exercise. In one direction clearly from a we
can compute all the values a(ζti). In the other direction we use the fact that since the coefficients of a are
all in the base field F2 then a(X2) = a(X)2 for any X ∈ F2d . In particular from a(ζti) we can compute
a(ζ2ti), a(ζ4ti), a(ζ8ti), and so on. Since Tm is a complete set of representatives for the quotient group
(Z/mZ)∗/ ⟨2⟩, then we can get this way the evaluations of a(ζj) for all the indexes j ∈ (Z/mZ)∗. This
gives us the evaluation of a in ϕ(m) different points, from which we can interpolate a itself.

We thus view the evaluation of the plaintext polynomial in ζtj as the j’th “plaintext slot”, and note
that arithmetic operations in the ring Rm,2 act on the plaintext slots in a SIMD manner, namely point-wise
adding or multiplying the elements in the slots.

We can equivalently view this mapping as Chinese remaindernig represntation (which makes the one-
to-one argument and the SIMD property obvious, but requires careful choises for the represenation of F2d

in the different plaintext slots).

2.3 Breaking Polynomials in Parts

As sketched in the introduction, our approach is rooted at the technique for assembling a high-degree poly-
nomial from low-degree parts by interleaving the coefficients of the parts. Alternatively, we can view this

3In other words, the sets Tm, 2Tm, 4Tm, . . . 2d−1Tm are all disjoint, and their union is the entire group (Z/mZ)∗.
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as breaking a high-degree polynomial into small-degree parts. Recall that for a polynomial a of degree up
to m− 1, and for any integer u < m, we can break a into u parts of degree less than w = ⌈m/u⌉, denoted
a(0), . . . , a(u−1), by splitting the coefficients of a according to their index mod u, thus obtaining

a(X) =
u−1∑
k=0

w−1∑
j=0

ak+uj ·Xk+uj =
u−1∑
k=0

Xk ·
(w−1∑

j=0

ak+uj ·Xuj

)
=

u−1∑
k=0

Xk · a(k)(Xu).

Of particular interest to us will be the case where m = u · w, where working with w-degree polynomials
that are evaluated at Xu allows us to move between big rings and small rings. The following lemma will be
useful later in the paper.

Lemma 1. Let m,w be positive integers such that w divides m, and let u = m/w. Also let Φm(X), Φw(X)
be the m-th and w-th cyclotomic polynomials, respectively.

a. Consider three polynomials f(X), g(X), h(X) of degree at most ϕ(w)− 1. If h(X) ≡ f(X) · g(X)
(mod Φw(X)) then h(Xu) ≡ f(Xu) · g(Xu) (mod Φm(X)).

b. Consider three polynomials f(X), g(X), h(X) of degree at most w − 1. If h(X) ≡ f(X) · g(X)
(mod Xw − 1) then h(Xu) ≡ f(Xu) · g(Xu) (mod Xm − 1).

Proof. a. Since h(X) ≡ f(X) · g(X) (mod Φw(X)) then for every primitive w-th root of unity τ (say,
over the complex field) we have h(τ) = f(τ) · g(τ). Let us denote f̃(X) = f(Xu) mod Φm(X), g̃(X) =
g(Xu) mod Φm(X), and h̃(X) = h(Xu) mod Φm(X), then for every primitive m-th root of unity ζ we
have

f̃(ζ) · g̃(ζ) = f(ζu) · g(ζu) (⋆)
= h(ζu) = h̃(ζ)

where the equality (⋆) follows since ζu is a primitive w-th of unity whenever ζ is a primitive m-th of unity.
Since f̃ · g̃ has the same evaluations as h̃ on all the primitive m-th roots of unity then it follows that f̃ · g̃ ≡ h̃
(mod Φm), as needed.

b. The proof is identical to Part a, except that we consider all w-th and m-th roots of unity, not just the
primitive roots.

3 The Basic Ring-Switching Procedure

Given a big-ring ciphertext c ∈ (Rm,q)
2, encrypting a plaintext polynomial a ∈ Rm,2 relative to a big-ring

secret key s ∈ Rm, our goal is roughly to come up with u small-ring ciphertexts c0, c1, . . . , cu−1 ∈ (Rw,q)
2

with ci encrypting the part a(i) ∈ Rw,2, all relative to some small ring secret key s′ ∈ Rw. The basic
procedure consists of the following steps:

1. Key-switch. We use the BGV key-switching method from [5] to switch into a “low-dimension”
secret key, still over the big ring Rm,q. The “low-dimension” key is s′′ ∈ Rm, where s′′ has nonzero
coefficients only for powers Xi where i ≡ 0 (mod u). That is, we have s′′(0) = s′ and s′′(i) = 0 for all
i > 0 (in other words s′′(X) = s′(Xu)).

2. Lift. Next we lift the resulting ciphertext from the big ring Rm,q to the even bigger ring Cm,q, using
the delayed-reduction technique of Gentry et al. [12]. As described in Section 3.2, the new ciphertext
encrypts over the bigger ring Cm,q a plaintext polynomial a′ related to a, still relative to the big-ring
secret key s′′.
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Figure 1: The transformation used to map elements between the different spaces.

3. Break. Now we can break the bigger-ring ciphertext into a collection of u intermediate-ring cipher-
texts (i.e., pairs over Cw,q), such that the k’th ciphertext is a valid encryption of the k’th part of a′

(i.e., a′(k) ∈ Cw,2). All these ciphertexts are valid (over Cw,q) with respect to the small-ring secret
key s′.

4. Reduce. Finally we reduce all the intermediate ring ciphertexts modulo (Φw(X), q), thereby getting
small ring ciphertexts over Rw,q, valid relative to s′.

We observe that the small ring ciphertext that we get this way may not encrypt the parts a(k) of the original
polynomial a. Rather, we will show that they encrypt some other polynomials ãk, which are defined as
ãk = a′(k) mod (Φw, 2). We will show, however, that these plaintext polynomials ãk satisfy the same
relation to the original plaintext polynomial, namely a(X) ≡

∑
k X

k · ãk(Xu) (mod Φm, 2), which is all
we need for our application.

3.1 Switching to a Low-Dimension Key

To enable this transformation, we include in the public key a “key switching matrix”, essentially encrypting
the old key s under the new low-dimension key s′′. Note that using such a low-dimension secret key has
security implications (since it severely reduces the dimension of the underlying LWE problem). In our case,
however, the whole point of switching to a smaller ring is to get lower dimension, so we do not sacrifice
anything new. Indeed, we show below that assuming the hardness of the decision-ring-LWE problem [16]
over the ring Rw,q, the key-switching matrix in the public key is indistinguishable from a uniformly random
matrix over Rm,q (even for a distinguisher that knows the old secret key s).

The ring-LWE problem in Rw,q. We denote the secret-key and error-distributions prescribed in the ring-
LWE problem in Rw,q by Sw and Ew, respectively. (E.g., these could be low-variance Gaussians in Rw

rounded modulo q, or some distributions involving the dual as in [16].) We also denote the uniform distri-
bution on Rw,q by Uw. For a fixed random secret s′ ← Sw, the ring-LWE problem in Rw,q is given many
pairs (γi, δi) with γi ← Uw, to distinguish the cases where the δi’s are chosen as δi = s′ · γi + ηi with ηi
from the case where they are chosen uniformly at random δi ← Uw.

The key-switching matrix. Let s ∈ Rm be the old big-ring secret key, and s′ ∈ Rw be the small-ring
secret-key that we want to switch into (where s′ was chosen from the secret-key distribution Sw). Define
the new big-ring low-dimension key s′′ ∈ Rm as the unique polynomial of degree less than m such that
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s′′(0) = s′ and s′′(k) = 0 for all k > 0. In other words, s′′(X) = s̃(Xu), i.e., the coefficients s′′0, s
′′
u, s

′′
2u, . . .

are exactly the coefficients of s′, and all the other coefficients of s′′ are zero.
For our key-switching matrix we use the following distribution of “error vectors” in Rw,q: We first

draw independently at random u low-norm polynomials from the ring-LWE error distribution, η(k) ← Ew,
then assemble from the η(k)’s a single error polynomial ϵ′(X) =

∑u−1
k=0 X

k · η(k)(Xu), and output ϵ =
ϵ′ mod (Φm, q). That is, we have the distribution

Em =

{
η(0), . . . , η(u−1) ← Ew, output

u−1∑
k=0

Xk · η(k)(Xu) mod (Φm, q)

}
Note that ϵ′ before the reduction mod (Φm, q) has degree smaller than ϕ(w) · u < m, and its norm-squared
is the sum of norm-squared of the ϵ(k)’s. Hence ϵ′ is a low-norm polynomial, and the norm of ϵ after
the reduction is larger by at most a factor of cm (cm is the ring constant for Rm), so ϵ too is a low norm
polynomial.4

Given the old key s ∈ Rm,q and the new s′ ∈ Rw,q, we draw at random l = ⌈log q⌉ elements from the
error distribution ϵ0, . . . , ϵl−1 ← Em, and the columns of our key-switching matrix are the pairs{

(βi, αi)
t : αi ← Um, βi = 2is− (s′′ · αi + 2ϵi) mod (Φm, q)

}
,

where Um is the uniform distribution over the big ring Rm,q. (Note that even if the secret-key and error
distributions over the small ring involce the “dual lattice” as in [16], the β’s are still going to be in the big
ring, because all their parts β(k) are in the small ring.)5

Since the errors ϵi have low-norm, this is a functional key-switching matrix, as described in [7]. Given
an s-ciphertext c = (c0, c1) we decompose c1 into its bit representation, thus getting an l-vector of polyno-
mials with 0-1 coefficients. Multiplying that vector by the key-switching matrix and adding c0 to the first
coordinate we get a new ciphertext c′ = (c′0, c

′
1) with respect to the new low-dimension big-ring key s′′. As

for security, we prove the following lemma.

Lemma 2. If the decision ring-LWE problem over the ring Rw,q is hard, then the key-switching matrix above
is indistinguishable from a uniformly random 2× l matrix with all the entries drawn independently from Um.
The indistinguishability holds even if the distinguisher gets as input the old secret key s ∈ Rm.

Proof. Our goal is to show that under the hardness of ring-LWE in Rw, it is infeasible to distinguish the case
where the βi’s where chosen as prescribed in the scheme from the case where they are uniformly random
according to Um. That is, we show that an adversary A that given the old secret key s and the matrix of
(βi, αi)’s can distinguish between these two distributions, can be used to solve the ring-LWE problem in the
small ring Rw,q.
The reduction. A ring-LWE distinguisher B gets l · u pairs (γi,k, δi,k), for i = 0, 1, . . . , l − 1 and k =
0, 1, . . . , u − 1, where the γi,k’s are uniform in Rw,q and the δi,k’s are either set as s′ · γi,k + ηi,k, for
η ← Ew, or chosen at random δi,k ← Uw. B begins by choosing an “old secret key” in the big ring s ∈ Rm,q

(according to whatever distribution the scheme specifies). Then B assembles the αi’s and βi’s by setting

αi(X) = 2
u−1∑
k=0

Xk · γi,k(Xu) mod (Φm, q) and βi(X) = 2i · s− 2 ·
u−1∑
k=0

Xk · δi,k(Xu) mod (Φm, q).

4This argument can be refined to eliminate the dependence on the “smallness” of cm, see Remark 1 at the end of the section.
5We could alternatively use the key-switching variant from [14] where the “matrix” consists of a single column (β, α)t), but

with respect to a largest modulus Q ≈ q2 · m. The proof of security would then depend on the hardness of ring-LWE in Rw,Q

rather than in Rw,q .
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Finally, B runs the adversary A on s and the matrix with columns (βi, αi)
t and outputs whatever A does.

Analysis. We observe that when we have polynomials f0, f1, . . . , fu−1 ∈ Rw,q and we set g(X) =∑u−1
k=0 X

kfk(X
u) mod (Φm, q), then the coefficients of g are related to those of the fk’s via a (ϕ(w) ·

u)× ϕ(m) matrix of full rank (i.e., rank ϕ(m)) over Z/qZ. When the fk’s are drawn from Uw then all their
coefficients are uniform in Z/qZ, and therefore so are all the coefficients of g.

Applying this observation to the reduction above, since the γi,k’s are uniform in the small ring Rw,q

then the αi’s are set as twice a uniform element in the big ring Rm,q, which is also uniform since q is odd.
Similarly, if the δi,k’s are uniform in Rw,q then also the βi’s are uniform in the big ring Rm,q. On the other
hand, if the δi,k’s are chosen as δi,k = s′ · γi,k + ηi,k mod (Φw, q), with ηi,k ← Ew, then we have

βi(X) ≡ 2i · s(X)− 2

u−1∑
k=0

Xk · δi,k(Xu)

= 2i · s(X)− 2 ·
u−1∑
k=0

Xk ·

δi,k evaluated at Xu︷ ︸︸ ︷[
(s′ · γi,k + ηi,k) mod (Φw, q)

]
(Xu)

(⋆)
≡ 2i · s(X)− 2 ·

u−1∑
k=0

Xk ·

no modular reduction︷ ︸︸ ︷[
s′ · γi,k + ηi,k

]
(Xu)

≡ 2i · s(X)− s′(Xu)︸ ︷︷ ︸
s′′(X)

· 2 ·
u−1∑
k=0

Xk · γi,k(Xu)︸ ︷︷ ︸
αi(X)

− 2
u−1∑
k=0

Xk · ηi,k(Xu)︸ ︷︷ ︸
ϵi(X)

(mod Φm, q),

where the equality (⋆) follows from Lemma 3 (part a). In this case the αi’s are still uniformly random, but
the ϵi’s are drawn exactly from our error distribution Em in the big ring Rm,q. This completes the proof.

3.2 Lifting to the Bigger Ring Cm,q

To lift the ciphertexts from the big ring Rm,q to the bigger ring Cm,q, we use the “delayed reduction”
technique of Gentry et al. (from the full version of [12]), which builds on the following lemma:

Lemma 3. ([12, Lemma 12]) For any integer m there is an integer polynomial Gm of degree ≤ m − 1,
such that Gm(α) = m for every complex primitive m-th root of unity α, and Gm(β) = 0 for every complex
non-primitive m-th root of unity β. Moreover the Euclidean norm of Gm’s coefficient vector is

√
m · ϕ(m).

Denoting Qm(X) = (Xm − 1)/Φm(X), then Gm(X) ≡ m (mod Φm) and Gm(X) ≡ 0 (mod Qm).
We can use polynomial Chinese remaindering to construct Gm from its remainders modulo Φm(X) and
Qm(X). Since Gm(X) ≡ 0 (mod Qm) then we can use Gm to “lift” any equality modulo Φm to an
equality modulo Xm − 1. Namely, if we have f ≡ g (mod Φm) then we also have G · f ≡ G · g
(mod Xm − 1). Specifically for the decryption formula, we start from a valid big-ring ciphertext that
satisfies the formula c0+ c1 · s′′ ≡ a+2e+ qκ (mod Φm) (for some low-norm polynomial e and a quotient
polynomial κ), then multiply both sides by Gm to obtain

(Gm · c0) + (Gm · c1) · s′′ ≡ 2(Gm · e) + (Gm · a) + q(Gm · κ) (mod Xm − 1).

Assuming that q ≫ m, the products Gm · e mod (Xm − 1) and Gm · a mod (Xm − 1) are both low-norm.
Thus, denoting c′0 = Gm · c0 mod (Xm − 1) and c′1 = Gm · c1 mod (Xm − 1), we get that the ciphertext
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(c′0, c
′
1) is a valid encryption over the bigger ring Cm of a′ = Gm · a mod (Xm − 1, 2), relative to the

secret key s′′. (We note that upon decryption, one can recover the original plaintext polynomial a, simply by
reducing a′ modulo (Φm(X), 2), this yields [m · a]2 = a, because Gm(X) ≡ m (mod Φm) and m is odd.)

3.3 Breaking The Ciphertext into Parts

After the transformation of the previous step, our ciphertext consists of a pair (c, d) of polynomials in the
bigger ring Cm,q = Z[X]/((Xm − 1), q). This ciphertext is valid with respect to the low-dimension secret
key s′′ of degree smaller than ϕ(m), satisfying s′′(0) = s′ ∈ Rw,q and s′′(1) = s′′(2) = · · · = s′′(u−1) = 0, in
other words s′′(X) = s′(Xu). Breaking c, d into their parts c(k), d(k), we then have the following lemma.

Lemma 4. The polynomials c(k) and d(k) are such that the following equality holds over Z[X]:

[
c+ d · s′′ mod (Xm − 1, q)

]
(X) =

u−1∑
k=0

Xk ·
[
c(k) + d(k) · s′ mod (Xw − 1, q)

]
(Xu).

(In the above equality, we have on both sides polynomials that are reduced to a lower degree and have their
coefficients reduced modulo q, then evaluated at X or Xu.)

Proof. Recall that decryption over Cm,q calls for computing z = c+ d · s′′ mod (Xm− 1), then reducing z
modulo q and then modulo 2. Breaking the polynomials c, d and s′′ into parts, we can write:

(d · s′′)(X) =

2u−2∑
k=0

∑
i,j s.t.
i+j=k

Xk · d(i)(Xu) · s′′(j)(X
u)

=
u−1∑
k=0

Xk ·

 ∑
i,j s.t.
i+j=k

d(i)(X
u) · s′′(j)(X

u) +
∑
i,j s.t.

i+j=k+u

Xu · d(i)(Xu) · s′′(j)(X
u)


(⋆)
=

u−1∑
k=0

Xk · d(k)(Xu) · s′′(0)(X
u) =

u−1∑
k=0

Xk · d(k)(Xu) · s′(Xu)

where the equality (⋆) follows since s′′(j) = 0 for j > 0 and d(i) = 0 for i ≥ u. This implies also that

(c+ d · s′′)(X) =
u−1∑
k=0

Xk · c(k)(Xu) +
u−1∑
k=0

Xk · d(k)(Xu) · s′(Xu)

=
u−1∑
k=0

Xk ·
[
c(k) + d(k) · s′

]
(Xu)

Recall from Lemma 3 (part b) that whenever we have h(X) ≡ f(X) · g(X) (mod Xw − 1) then also
h(Xu) ≡ f(Xu) · g(Xu) mod (Xm − 1). Hence we have

(c+ d · s′′)(X) ≡
u−1∑
k=0

Xk ·
[
c(k) + d(k) · s′ mod (Xw − 1)

]
(Xu) (mod Xm − 1),
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and since the right-hand side of the last equality is a polynomial of degree less than m, then we get the
following equality holding over Z[X]:

[
c+ d · s′′ mod (Xm − 1, q)

]
(X) =

u−1∑
k=0

Xk ·
[
c(k) + d(k) · s′ mod (Xw − 1, q)

]
(Xu).

We note that in the above equality, we have on both sides polynomials that are reduced to a lower degree
and have their coefficients reduced modulo q, then evaluated at X or Xu. However, once we perform
these modular reduction on both sides, then both polynomials have degrees less than m and coefficients
smaller than q/2 in absolute value, and since they are congruent modulo ((Xm − 1), q) then they must be
identical.

Size of Polynomials. Importantly, the sum on the right-hand side of the last equality is a “direct sum”,
in the sense that the k’th summand has non-zero coefficients only in powers Xi such that i = k (mod u).
This means that each coefficient in the sum comes from exactly one of the summands. This, in turn, implies
that the norm-squared of the left-hand side is the sum of norm-squared of the terms on the right-hand side.
Hence if the left-hand side has low norm, then also every summand on the right must have low norm.

We stress that this “direct sum” argument is the reason why we lift our ciphertext to the bigger ring
Cm,q. This argument does not apply when working modulo Φm, thus without lifting we could not have used
the fact that the left-hand side has low norm to argue that all the terms on the right have low norm.

Ciphertexts in the intermediate ring Cw,q. Consider now the u intermediate-ring ciphertexts over Cw,q:

c0 = (c(0), d(0)), c1 = (c(1), d(1)), . . . , cu−1 = (c(u−1), d(u−1)).

Since the bigger-ring ciphertext (c, d) was a valid encryption of a′ = Gm·a mod (Xm−1, 2) over Cm,q with
respect to secret key s′′, we know that we have [c+ d · s′′ mod (Xm− 1, q)] = 2e′ + a′ for some low-norm
error e′. Let us denote b′ = 2e′ + a′. From the equalities above (and the “direct sum” argument), we know
that the k’th part of b′, namely b′(k) = 2e′(k) + a′(k), is obtained as b′(k) = [c(k) + d(k) · s′ mod (Xw − 1, q)].
As e′(k) is a low-norm error term, we conclude that the vectors ck are valid encryption of the parts a′(k) over
Cw,q with respect to secret key s′. Thus we have shown that valid ciphertexts encrypting the parts a′(k) of a′

(over the intermediate ring Cw,q with respect to s′) can be obtained simply by breaking the polynomials c, d
into their parts.

3.4 Reducing to the Small Ring Rw,q

Now that we have valid ciphertext (c(k), d(k)) encrypting the parts a′(k) over the intermediate ring Cw,q

relative to s′, it only remains to reduce them into the small ring Rw,q. We do this simply by reducing each
of the element (c(k), d(k)) modulo (Φw, q), i.e. we set c̃k = c(k) mod (Φw, q) and d̃k = d(k) mod (Φw, q).

Lemma 5. The ciphertext (c̃k, d̃k) is an encryption (over Rw,q) of the plaintext ãk = a′(k) mod (Φw, 2) ∈
Rw,2.

Proof. Recall that for all k we have the equality (over Z[X])

c(k) + d(k) · s′ mod (Xw − 1, q) = 2e′(k) + a′(k)
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for a low-norm error term e′(k). Denoting b′(k) = 2e′(k) + a′(k), we have that b′(k) is a low-norm polynomial in
Cw,q.

Let us now denote b̃k = (b′(k) mod Φw) (without reduction modulo q). Since the b′(k)’s are low-norm

then so are the b̃k (because reduction modulo Φw increases the norm by at most a factor of the ring con-
stant cw). This means that b̃k has norm much smaller than q, so it is already reduced modulo q. In other
words, we also have b̃k = b′(k) mod (Φw, q).

Observe that ãk = (a′(k) mod Φw) + 2 · µk for some low-norm µk’s. The µk’s have low norm because
ãk has low norm (being a 0-1 polynomial) and also (a′(k) mod Φw) has low norm (being at most cw time

more than the norm of the 0-1 polynomial a′(k)). Next we argue that for all k we have b̃k = 2ẽk + ãk for a
low-norm error terms ẽk ∈ Rw,q. This follows because

b̃k = (b′(k) mod Φw) = (2 · e′(k) + a′(k) mod Φw) = (2 · e′(k) mod Φw) + (a′(k) mod Φw)

= 2 · (e′(k) mod Φw) + ãk − 2 · µk = 2 · ((e′(k) mod Φw)− µk︸ ︷︷ ︸
ẽk

) + ãk,

Finally, we obtain:

(c̃k + d̃k · s′ mod (Φw, q)) = (c(k) + d(k) · s′ mod (Φw, q))

= (b′(k) mod (Φw, q)) = b̃k = 2 · ẽk + ãk

In other words, since ẽk has low norm then the pair (c̃k, d̃k) is a valid ciphertext over Rw,q with respect to
secret key s′, encrypting the plaintext polynomial ãk ∈ Rw,2.

What are the ãk’s? At this point we are done converting the original big-ring ciphertext encrypting a ∈
Rm,2 into a collection of valid small-ring ciphertexts encrypting the ãk’s. But how are these ãk’s related to
the original plaintext polynomial a? Ideally we would have liked the ãk to be the parts of a (i.e. ãk = a(k)),
but this is not necessarily what we get. Still, we show that we can recover the original polynomial a from
the ãk’s via the same assembly formula,

a(X) =
u−1∑
k=0

Xk · ãk(Xu) mod (Φm, 2).

To show that we first observe that on both sides of the equation are 0-1 polynomials of degree less than
ϕ(m), so to demonstrate equality it is enough to show that they agree when evaluated at ϕ(m) different
points (from any field of our choice). In particular, we now show that they agree on all the primitive m’th
roots of unity over the finite field F2d . For this we recall the following basic facts:

1. The field F2d contains primitive m’th roots of unity, and if ζ ∈ F2d is a primitive m’th roots of unity
then ζu is a primitive w’th root of unity.

2. Since Gm ≡ m ≡ 1 (mod Φm, 2), then [Gm mod 2](ζ) = 1 for every primitive m’th root of unity
ζ ∈ F2d . Since a′ = Gm · a mod (Xm − 1, 2), it then follows that a′(ζ) = a(ζ) for every primitive
m’th root of unity ζ ∈ F2d .

3. Since ãk = a′(k) mod (Φw, 2), then ãk(τ) = a′(k)(τ) for every primitive w’th root of unity τ ∈ F2d .
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Putting all of these facts together, and using the assembly formula for a′ from the parts a′(k), we get for every
primitive m’th root of unity ζ ∈ F2d :

a(ζ)
Fact 2
= a′(ζ) =

u−1∑
k=0

ζk · a′(k)(ζ
u)

Facts 1,3
=

u−1∑
k=0

ζk · ãk(ζu)

Remark 1. If we use the delayed reduction technique from [12, Appendix E] then we can keep everything
relative to Xm − 1 and Xw − 1 and we do not need to rely on the smallness of the ring constants cm, cw.
The key-switching matrices will remain modulo Φm, however.

4 Homomorphic Computation in the Small Ring

So far we have shown how to break a big-ring ciphertext, encrypting some big-ring polynomial a ∈ Rm,2,
into a collection of u small-ring ciphertexts encrypting small-ring polynomials ã0, ã1, . . . , ãu−1 ∈ Rw,2, that
are “related” to the original plaintext polynomial a. Namely a can be constructed as a particular big-ring
linear combination of the ãk’s, a(X) =

∑
k X

k · ãk(Xu) mod (Φm, 2).
This, however, still falls short of our goal of speeding-up homomorphic computation by switching to

small-ring ciphertexts. Indeed we have not shown how to use the encryption of the ãk’s for further homo-
morphic computation. Following the narrative of SIMD homomorphic computation from [19, 12, 13, 14],
we view the big-ring plaintext polynomial a as an encoding in the big ring of several plaintext elements
from the extension field F2d (with d the order of 2 in (Z/mZ)∗). We therefore wish to obtain small-ring
ciphertexts encrypting small-ring polynomials that encode of the same underlying F2d elements.

One potential ”algebraic issue” with this goal, is that it may not always be possible to embed F2d

elements inside small-ring polynomials from Rw,2. Recall that the extension degree d is determined by
the order of 2 in (Z/mZ)∗. But the order of 2 in (Z/wZ)∗ may be smaller than d, in general it will be some
d′ that divides d. If d′ < d then we can only embed elements of the sub-field F2d

′ in small-ring polynomials
from Rw,2, and not the F2d elements that we have encoded in the big-ring polynomial a. For most of this
section we only consider the special case where the order of 2 in both (Z/mZ)∗ and (Z/wZ)∗ is the same d.
We discuss possible extensions to the general case at the end of the section.

Even for the special case where the order of 2 in (Z/mZ)∗ and (Z/wZ)∗ is the same (and hence the
“plaintext slots” in the small ring contain elements from the same extension field as those in the big ring),
we still need to tackle the issue that big ring polynomials have more plaintext slots than small ring polyno-
mials. Specifically, big-ring polynomials have ℓm = ϕ(m)/d slots, whereas small-ring polynomials only
have ℓw = ϕ(w)/d slots. The solution here is simple: we just partition the slots in the original big-ring poly-
nomial a into ℓm/ℓw = ϕ(m)/ϕ(w) groups, each consisting of ℓw slots. For each group we then construct
a small-ring ciphertext, encrypting a small-ring polynomial that encodes the plaintext slots from that group.

One advantage of this approach is that if the original plaintext polynomial a was “sparsely populated”,
holding only a few plaintext elements in its slots, then we can reduce the number of small ring ciphertexts
that we generate to the bear minimum number needed to hold these few plaintext slots. A good example
for this scenario is the computation of the AES circuit in [14]: Since there are only 16 bytes in the AES
state, we only use 16 slots in the plaintext polynomial a. In this case, as long as we have at least 16 slots in
small-ring polynomials, we can continue working with a single small-ring ciphertext (as opposed to the u
ciphertexts that the technique of the previous section gives us).
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4.1 Ring-Switching with Plaintext Encoding

Below we describe our method for converting the plaintext encoding between the different rings, for the
special case where the order of 2 is the same in (Z/mZ)∗ and (Z/wZ)∗. As explained in Section 2.2, each
plaintext slot in the big-ring polynomial is associated with a conjugacy class of 2 in (Z/mZ)∗ (equivalently,
an element in the quotient group Qm = (Z/mZ)∗/ ⟨2⟩), and similar association holds between plaintext
slots in small-ring polynomials and elements of the quotient group Qw = (Z/wZ)∗/ ⟨2⟩. We thus begin by
relating the structures and representations of these two quotient groups. Below let Tw = {t′1, . . . , t′ℓw} ⊆
(Z/wZ)∗ be a representative set for Qw. i.e., a set containing exactly one element from each conjugacy
class in (Z/wZ)∗, ordered arbitrarily.

Clearly, since w divides m then (Z/mZ)∗ consists of ϕ(m)/ϕ(w) copies of (Z/wZ)∗. That is, (Z/mZ)∗
can be partitioned into ϕ(m)/ϕ(w) disjoint sets, each of size ϕ(w), and each of them congruent modulo w
to (Z/wZ)∗. Moreover, it is easy to see that when the order of 2 is the same in (Z/mZ)∗ and (Z/wZ)∗
then this partitioning can be made to respect the conjugacy classes of 2. Namely for any t ∈ (Z/wZ)∗, we
put 2t mod m in the same part as t. Such conjugation-respecting partition of (Z/mZ)∗ can be constructed
greedily, adding conjugacy classes from (Z/mZ)∗ to the current part until we have a complete copy of
(Z/wZ)∗, then proceeding to the next part. Let S1, S2, S3, . . . be this partition of (Z/mZ)∗, so we have the
properties:

• Si ∩ Sj = ∅ for all i ̸= j, and ∪iSi = (Z/mZ)∗;

• For all i we have |Si| = ϕ(w), and also Si mod w = {(s mod w) : s ∈ Si} = (Z/wZ)∗; and

• For all i we have 2Si mod m = {(2s mod m) : s ∈ Si} = Si.

Given the partition of (Z/mZ)∗ to Si’s and the ordered representative set Tw forQw, one way of getting an
ordered representative set Tm for Qm is to set

Tm =
{
t ∈ (Z/mZ)∗ : ∃ t′ ∈ Tw s.t. t ≡ t′ (mod w)

}
,

obviously this set Tm has exactly one element from each conjugacy class in every part Si. We can order it,
Tm = {t1, t2, . . . , tℓm}, by taking all the elements from one part Si before taking any of the elements from
the next part Si+1, and among the elements from the same part use the ordering of Tw.

Finally, fixing a specific primitive m’th root of unity ζ ∈ F2d and the particular primitive w’th root
of unity τ = ζu, we let the j’th plaintext slot encoded in a ∈ Rm,2 be the evaluation a(ζtj ) ∈ F2d , and
similarly the j’th plaintext slot encoded in a∗ ∈ Rw,2 is the evaluation a∗(τ t

′
j ). The following lemma plays

an important role in our transformation:

Lemma 6. Let m = u · w for odd integers u,w, and denote by d the order of 2 in (Z/mZ)∗. Let ζ be a
primitive m’th root of unity in F2d , and denote τ = ζu, so τ is a primitive w’th root of unity.

Let S ⊂ (Z/mZ)∗ be a subset satisfying (a) |S| = ϕ(w) and S mod w = (Z/wZ)∗, and (b) S is closed
under multiplication by 2, S = 2S mod m. Then there exists a polynomial h ∈ Rw,2 such that for all j ∈ S,
it holds that h(τ j) = ζj .

Proof. Clearly, since |S| = ϕ(w) then there exists a unique polynomial h over F2d of degree smaller than
ϕ(w) such that h(τ j) = ζj all j ∈ S. It is left to show only that h is a polynomial over the base field,
i.e. with 0-1 coefficients. To show this, note that by definition of h we have h(τ j) = ζj for all j ∈ S, and
moreover 2j ∈ S whenever j ∈ S (and hence h(τ2j) = ζ2j). Thus, we get for all j ∈ S

h(τ2j) = ζ2j = (ζj)2 = h(τ j)2.
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Since S mod w = (Z/wZ)∗ then the set {τ j : j ∈ S} ranges over all the primitive w’th roots of unity in
F2d , so we have h(θ2) = h(θ)2 for every primitive w’th root of unity θ. It is a well-known fact that for an
arbitrary polynomial h(X) of degree smaller than ϕ(w) over F2d , if h(θ2) = h(θ)2 holds for every primitive
w’th root of unity θ ∈ F2d , then h is in fact a polynomial over the base field, i.e. a polynomial with 0-1
coefficients. This conclude the proof.

We are now ready to show how to convert a big-ring ciphertext c, encrypting some polynomial a ∈ Rm,2

into a single small-ring ciphertext that encrypt some other a∗ ∈ Rw,2, such that a∗ encodes all the plaintext
elements that were encoded in the plaintext slots corresponding to one of the Si’s (i.e., all the slots Tm ∩ Si

for some Si).
We begin by using the transformation from the previous section to construct from c the collection of u

small-ring ciphertexts c0, c1, . . . , cu−1 that encrypt the polynomials ã0, ã1, . . . , ãu−1 ∈ Rw,2, respectively,
where the ãk’s are related to the original a via the assembly formula a(X) =

∑
k X

k ·ãk(Xu) mod (Φm, 2).
Considering all of these 0-1 polynomials as members of F2d [X], and letting ζ ∈ F2d be a primitive root of
unity (so ζ is a root of [Φm mod 2] over F2d), the assembly formula implies in particular that

a(ζj) =

u−1∑
k=0

ζjk · ãk(ζju) =

u−1∑
k=0

ζjk · ãk(τ j) for every j ∈ Si

(where τ = ζu). Observing that Si satisfies the conditions of Lemma 6, let h ∈ Rw,2 be the polynomial
satisfying h(τ j) = ζj for all j ∈ Si. Further, let us denote hk = (hk mod (Φw, 2)) ∈ Rw,2. Since for all
j ∈ Si, τ j is a primitive w’th root of unity (and hence a root of [Φw mod 2] over F2d), then we get

hk(τ
j) = h(τ j)k = ζjk for every j ∈ Si.

We now set c∗ =
∑u−1

k=0 hk · ck mod (Φw, q), and note that this is a linear combination of the valid cipher-
texts ck with low-norm coefficients. (The hk’s have low norm because they are 0-1 polynomials.) Using
the additive homomorphism of the cryptosystem (over the small ring Rw), this means that c∗ is still a valid
small-ring ciphertext, encrypting the polynomial a∗ =

∑u−1
k=0 hk · ãk mod (Φw, 2) ∈ Rw,2. Moreover, by

our definition of the hk’s we have that for all j ∈ Tm ∩ Si,

a∗(τ j) =
u−1∑
k=0

hk(τ
j) · ãk(τ j) =

u−1∑
k=0

ζjk · ãk(ζju) = a(ζj).

Using our encoding conventions from the beginning of this section, this means that the content of the plain-
text slots of a∗ is exactly the content of the plaintext slots in a corresponding to Tm ∩ Si.

Ring-switching for “sparsely populated” ciphertexts. We mentioned that when the original big-ring ci-
phertext was sparsely populated, we would like to reduce it to only a small number of small-ring ciphertexts,
only as many as needed to hold all the plaintext slots that contain real data. If the full slots are not already
packed together in one (or a few) of the parts Si, then we can apply the slot permutation techniques of Gentry
et al. [12] to pack them as needed inside the big-ring ciphertext, before breaking it into the small-ring.

4.2 The General Case

The above treatment relies on the order of 2 in (Z/wZ)∗ and (Z/mZ)∗ being the same d. However, the
only part that relies on this fact was Lemma 6, where we needed it in order to prove that the polynomial
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h is defined over the base field. In the general case this no longer holds, so although we can define the
polynomials hk (and therefore a∗) just as above, all of these polynomials will now have coefficients from
the extension field F2d rather than 0-1 coefficients.6 This is unavoidable in general, since we know that we
cannot always encode F2d elements as polynomials in the small ring Rw,2.

In principle there is no problem with using plaintext arithmetic over F2d [X]/Φw (rather than Rw,2 =
F2[X]/Φ(w)). Fixing a representation F2d = F2[Y ]/G(Y ), we can represent the plaintext polynomial
A(X) ∈ F2d [X]/Φw(X) as a bivariate polynomial A(X,Y ) ∈ F2[X,Y ]/(Φw(X), G(Y )), writing each
coefficient from F2d as a degree-(d− 1) polynomial in Y . This means that A can be written as A(X,Y ) =∑d−1

i=0 ai(X)Y i with the ai’s 0-1 polynomials in Rw,2. An encryption of a A then consists of d small-ring
ciphertexts encrypting the ai’s, and arithmetic operations can be implemented naturally using our basic
operations on encryptions of the ai’s. However, this is likely to be quite inefficient, probably even less
efficient than keeping everything in the big ring.

We remark that in many settings, even though our plaintext slots can hold elements in F2d , we really only
use them to hold elements from a much smaller sub-field (e.g. bits or F28 elements). One could therefore
hope that the technique from above could be generalized to map the F2d plaintext slots over the big ring into
F2d

′ slots over the small ring, such that if the content of the slots happened to already belong to the subfield
F2d′ then it will be copied intact. Finding such a generalization for every d′|d is an interesting open problem.

For the case where we use the plaintext slots to hold just bits, it turns out that we can use a slight
adaptation of the procedure for d′ = d. In this case, the transformation from above yields an encryption of a
polynomial A(X) over F2d , that contains in its slots whatever we had in the original big-ring polynomial. In
particular it means that A(τk) ∈ {0, 1} for every k, hence in this case A must be a 0-1 polynomial. So after
we compute an encryption of A (as a set of d encryptions as above), we can just discard all the ciphertexts
except the one corresponding to a0.
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[15] Adriana Lòpez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-Fly Multiparty Computation on
the Cloud via Multikey Fully Homomorphic Encryption In STOC 2012.

[16] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 1–23, 2010.

[17] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for Ring-LWE cryptography.
Manuscript, 2012

[18] Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In
CT-RSA, volume 6558 of Lecture Notes in Computer Science, pages 319–339. Springer, 2011.

[19] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Manuscript at
http://eprint.iacr.org/2011/133, 2011.

17


