In this lecture we review Gentry’s somewhat homomorphic encryption (SWHE) scheme. In Gentry’s scheme, the plaintext space and the ciphertext space are rings (support addition and multiplication), and given encryptions of ℓ messages, c_1, \ldots, c_ℓ, where $c_i \leftarrow \text{Enc}(m_i)$, and a polynomial Q of bounded degree (and not-too-many terms), we have (except for negligible probability)

$$Q(m_1, \ldots, m_\ell) = \text{Dec}(Q(c_1, \ldots, c_\ell)).$$

1 Background: GGH-type Cryptosystems

We briefly recall Micciancio’s “cleaned-up version” of GGH cryptosystems [GGH97, Mic01]. The secret and public keys are “good” and “bad” bases of some lattice Λ. More specifically, the key-holder generates a good basis by choosing B_{sk} to be a basis of short, “nearly orthogonal” vectors. Then it sets the public key to be the Hermite normal form of the same lattice, $B_{\text{pk}} \overset{\text{def}}{=} \text{HNF}(\Lambda(B_{\text{sk}}))$.

A ciphertext in a GGH-type cryptosystem is a vector \vec{c} close to the lattice $\Lambda(B_{\text{pk}})$, and the message which is encrypted in this ciphertext is somehow encoded in the distance from \vec{c} to the nearest lattice vector. To encrypt a message m, the sender chooses a short “error vector” \vec{e} that encodes m, and then computes the ciphertext as $\vec{c} \leftarrow \vec{c} \mod B_{\text{pk}}$. Note that if \vec{c} is short enough (i.e., less than $\lambda_1(\Lambda)/2$), then it is indeed the distance between \vec{c} and the nearest lattice point.

To decrypt, the key-holder uses its “good” basis B_{sk} to recover \vec{e} by setting $\vec{c} \leftarrow \vec{c} \mod B_{\text{sk}}$, and then recovers m from \vec{e}. The reason decryption works is that, if the parameters are chosen correctly, then the parallelepiped $\mathcal{P}(B_{\text{sk}})$ of the secret key will be a “plump” parallelepiped that contains a sphere of radius bigger than $\|\vec{c}\|$, so that \vec{c} is indeed the unique point inside $\mathcal{P}(B_{\text{sk}})$ that equals \vec{c} modulo Λ. On the other hand, the parallelepiped $\mathcal{P}(B_{\text{pk}})$ of the public key will be very skewed, and will not contain a sphere of large radius, making it useless for solving BDDP.

More algebraically, the secret-key basis B_{sk} is chosen so that all the columns of B_{sk}^{-1} have Euclidean length smaller than $1/2\|\vec{e}\|$. Recall that $\vec{c} = \vec{v} + \vec{e}$ for some $\vec{v} \in \Lambda$, so we can write $\vec{c} = \vec{\alpha}B_{\text{sk}} + \vec{e}$ for some integer coefficient vector $\vec{\alpha}$. Also, reducing $\vec{c} \mod B_{\text{sk}}$ is done by computing

$$\boxed{\text{Modulo to nearest integer}}$$

$$\vec{c} \mod B_{\text{sk}} = [(\vec{c}B_{\text{sk}}^{-1}) \bmod B_{\text{sk}}] B_{\text{sk}} = [(\vec{\alpha}B_{\text{sk}} + \vec{e})B_{\text{sk}}^{-1}] B_{\text{sk}} \overset{\text{(*)&}}{=} [\vec{\alpha} + \vec{e}B_{\text{sk}}^{-1}] B_{\text{sk}} = \vec{\alpha}B_{\text{sk}} + \vec{e} \mod B_{\text{sk}}$$

where Equality (\ast) follows since $\vec{\alpha}$ is an integer vector and $[\cdot]$ means taking only the fractional part. Each entry of $\vec{e}B_{\text{sk}}^{-1}$ is the inner product of \vec{e} with a column of B_{sk}^{-1}, and as the column is shorter than $1/2\|\vec{e}\|$ then that entry is smaller than $1/2$ in absolute value. It follows that the fractional part $[\vec{e}B_{\text{sk}}^{-1}]$ equals $\vec{e}B_{\text{sk}}^{-1}$ exactly. Thus,

$$\vec{c} \mod B_{\text{sk}} = [\vec{e}B_{\text{sk}}^{-1}] B_{\text{sk}} = \vec{e}B_{\text{sk}}^{-1}B_{\text{sk}} = \vec{e}.$$

Note that if the encoding of m into \vec{c} is linear, then this scheme is already “somewhat” additively homomorphic, since for two ciphertexts $\vec{c}_1 = \vec{v}_1 + \vec{e}_1$ and $\vec{c}_2 = \vec{v}_2 + \vec{e}_2$, we get that $\vec{c} = \vec{e}_1 + \vec{e}_2$ encodes $m_1 + m_2$. If \vec{c} is still short enough then decryption will recover it and thus returns $m_1 + m_2$.

For example, if in order to encode \(m \in \{0, 1\} \) we denote \(\vec{m} = (m, 0, \ldots, 0) \in \{0, 1\}^n \), choose a short integer vector \(\vec{r} \) and set \(\vec{e} = 2\vec{r} + \vec{m} \), then

\[
\vec{c}_1 + \vec{c}_2 = (\vec{v}_1 + 2\vec{r}_1 + \vec{m}_1) + (\vec{v}_2 + 2\vec{r}_2 + \vec{m}_2) = (\vec{v}_1 + \vec{v}_2) + 2(\vec{r}_1 + \vec{r}_2) + (\vec{m}_1 + \vec{m}_2) = \vec{v} + \vec{e},
\]

where \(\vec{v} = \vec{v}_1 + \vec{v}_2 \in \Lambda \), and \(\vec{e} \equiv (m_1 \oplus m_2, 0, \ldots, 0) \mod 2 \). If \(\vec{e} \) is short then we decrypt \(m_1 \oplus m_2 \).

Recall that a lattice is a discrete additive subgroup of \(\mathbb{Z}^n \). In order to obtain an encryption scheme that is (somewhat) homomorphic w.r.t. multiplication we need a ring structure as we have in ideal lattices. Consider the encryption scheme from the “GGH example” above, where \(\Lambda = \Lambda_J \) is an ideal lattice with the underlying ring \(R_n = \mathbb{Z}[x]/(x^n + 1) \), then we have

\[
\vec{c}_1 \times \vec{c}_2 = (\vec{v}_1 + 2\vec{r}_1 + \vec{m}_1) \times (\vec{v}_2 + 2\vec{r}_2 + \vec{m}_2) = \frac{\vec{v}_1 \times (2\vec{r}_2 + \vec{m}_2) + \vec{v}_2 \times (2\vec{r}_1 + \vec{m}_1) + 2(\vec{r}_1 \times \vec{r}_2 + \vec{r}_1 \times \vec{m}_2 + \vec{m}_1 \times \vec{r}_2) + \vec{m}_1 \times \vec{m}_2}{\vec{e}}
\]

where \(\vec{v} \in \Lambda_J \) since \(\vec{v}_1, \vec{v}_2 \in \Lambda_J \) and \(J \) is an ideal. Note that if \(\vec{m}_i = (m_i, 0, \ldots, 0) \), with the leftmost entry being the free term in the corresponding polynomial, then we have \(\vec{m}_1 \times \vec{m}_2 = (m_1m_2, 0, \ldots, 0) \). If \(\vec{e} \) is still small enough then we can recover it by \(\vec{m}_1 \times \vec{m}_2 \equiv \vec{e} \mod 2 \).

2 Gentry’s Somewhat-Homomorphic Encryption (SWHE) Scheme

The SWHE scheme that underlies Gentry’s scheme is a GGH-type cryptosystem where the public key specifies an ideal lattice \(\Lambda_J \). Here we only cover a special case of Gentry’s scheme where all the ideals are principal and the ring that is used for polynomial arithmetic is \(R_n = \mathbb{Z}[x]/(x^n + 1) \), with \(n \) a power of two. (This is the variant that was implemented in [SV10] and [GH11].)

The relation in the ring \(R_n \) is \(x^n \equiv -1 \), hence \(R_n \) is closed under “rotation-negation”, i.e. if

\[
\vec{v} = (v_0, \ldots, v_{n-1}) = v_0 + v_1x + \ldots + v_{n-1}x^{n-1} \in R_n,
\]

then so is

\[
x\vec{v} = x \times \sum_{i=0}^{n-1} v_ix^i = -v_{n-1} + v_0x + v_1x^2 + \ldots + v_{n-2}x^{n-1} = (-v_{n-1}, v_0, \ldots, v_{n-2}).
\]

Therefore, given \(\vec{v} = (v_0, \ldots, v_{n-1}) \in R_n \), we can define the rotation basis of \(\vec{v} \) as

\[
V = \begin{pmatrix}
\vec{v} \\
x\vec{v} \\
\vdots \\
x^{n-1}\vec{v}
\end{pmatrix} = \begin{pmatrix}
v_0 & v_1 & \cdots & v_{n-1} \\
-v_{n-1} & v_0 & \cdots & v_{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
-v_1 & -v_2 & \cdots & v_0
\end{pmatrix}.
\]

Parameters: The security parameter is \(n = 2^m \), in addition we have 3 other size parameters \(\rho, \sigma, \tau \) that satisfy \(\tau \geq \sigma n \log n \) and \(\tau > (pn \log n)^{4\sqrt{\pi}}. \) For example one can set \(\sigma = n \), and then determine \(\rho, \tau \).

Key Gen: Choose \(\vec{s} \leftarrow \mathcal{N}(0, \sigma^2)^n \) and set \(\vec{v} = (\tau, 0, \ldots, 0) + \lceil \vec{s} \rceil \). Ensure that \(\det(V) \) is odd and that \(\| \lceil \vec{s} \rceil \| < \sigma n \log n \). The secret key is \(\vec{v} \) whereas the public key is \(B = \text{HNF}(\vec{v}) \), the HNF basis for the lattice spanned by the rows of \(V \) (corresponding to the ideal \(\langle \vec{v} \rangle \).)

Encrypt \(B(m) \): Given \(m \in \{0, 1\} \) choose at random \(\vec{r} \leftarrow \mathcal{N}(0, \rho^2)^n \), and set

\[
\vec{c} = 2\lceil \vec{r} \rceil + (m, 0, \ldots, 0) \mod B.
\]

2
Decrypt_\ell(\vec{c}): Let V be the rotation basis of \vec{v}, compute \vec{m} = (\vec{c} \mod V) \mod 2, and output the first entry, i.e. if W = V^{-1}, then \vec{m} = ([cW]V) \mod 2 (where [\cdot] is the fractional part in the range \([-\frac{1}{2}, \frac{1}{2}])

As in the GGH scheme, in order for the decryption to work we require that \|cW\|_{\infty} < \frac{1}{2}, so that we have [cW]V = cWV = \vec{c}.

Claim 1. Let \vec{e} \in \mathbb{R}^n such that \|\vec{e}\|_{\infty} < \frac{\tau}{4}, then \|cW\|_{\infty} < \frac{1}{2}.

Proof. Since every entry of \vec{c}W is an inner product of \vec{e} with a column of W, it is enough to show that every column of W is small enough.

Assume that \|cW\|_{\infty} \geq \frac{1}{2}, and we will show that w.h.p. \|\vec{e}\|_{\infty} \geq \frac{\tau}{4}. Let \vec{t} = cW = \vec{e}V^{-1}, i.e. \vec{e} = iV = \sum_j t_j (x^j \vec{v}). Let i be the largest such that |t_i| \geq \frac{1}{2}. In the key generation procedure we set \vec{v} = (\tau, 0, \ldots, 0) + [\vec{s}], therefore x^j \vec{v} = (0, \ldots, 0, \tau, 0, \ldots, 0) + [x^j \vec{s}], and the i^{th} entry of \vec{e} is

\[
e_i = t_i \tau + \sum_{j=0}^{i} t_j [s_{i-j}] - \sum_{j=0}^{n-1-(i+1)} t_{j+i+1} [s_{n-1-j}].
\]

It follows that

\[
|e_i| = |t_i \tau + \sum_{j=0}^{i} t_j [s_{i-j}] - \sum_{j=0}^{n-1-(i+1)} t_{j+i+1} [s_{n-1-j}]| \\
\geq |t_i \tau - \sum_{j=0}^{i} t_j [s_{i-j}] - \sum_{j=0}^{n-1-(i+1)} t_{j+i+1} [s_{n-1-j}]| \\
\geq |t_i \tau - \sum_{j=0}^{i} t_j [s_{i-j}] - \sum_{j=0}^{n-1-(i+1)} t_1 [s_{n-1-j}]| \\
= |t_i||\tau - \sum_{j=0}^{n-1} [s_{j}]|| \\
= |t_i||\tau - \|\vec{s}\|_{1}|.
\]

However, since |t_i| \geq \frac{1}{2}, \|\vec{s}\|_{1} < \sigma n \log n and \tau \geq \sigma n \log n we get

\[
|e_i| \geq \frac{1}{2} |\tau - \sigma n \log n| \geq \frac{\tau}{4}.
\]

It follows that \|\vec{e}\|_{\infty} \geq \frac{\tau}{4}, and we get a contradiction.

The following claim explains the somewhat homomorphic nature of the encryption scheme.

Claim 2. Let \(Q(x_1, \ldots, x_\ell)\) be a binary polynomial of degree at most \(\sqrt{n}\) in each variable, with at most \(n^{2\sqrt{n}}\) terms. For \(i = 1, \ldots, \ell\) let \(m_i \in \{0, 1\}\) and set \(c_i' \leftarrow \text{Enc}_B(m_i)\). In addition, set \(\vec{c'} = Q(c_1', \ldots, c_\ell')\) (where evaluation is over \(R_n\)). Then w.h.p. \(\text{Dec}(\vec{c'}) = Q(m_1, \ldots, m_\ell) \mod 2\).

Proof. With high probability each one of the \(c_i'\) is of the form \(c_i' = \vec{u}_i + \vec{e}_i\), for some \(\vec{u}_i \in \langle \vec{v} \rangle\), with \(\|\vec{e}_i\|_{\infty} < \rho \log n\) and \(c_i' \equiv (m_i, 0, \ldots, 0) \mod 2\). It follows that \(Q(c_1', \ldots, c_\ell') = \vec{u} + Q(\vec{e}_1', \ldots, \vec{e}_\ell')\) for some \(\vec{u} \in \langle \vec{v} \rangle\) (because the \(\vec{u}_i\) are in the ideal). Similarly, since \(e_i = 2r_i + m_i\) we have \(Q(\vec{e}_1', \ldots, \vec{e}_\ell') = 2\vec{r} + Q(m_1, \ldots, m_\ell) \equiv Q(\vec{m}_1, \ldots, \vec{m}_\ell) \mod 2\).

Note that for \(\vec{a}, \vec{b} \in R_n\) we have \(\|\vec{a} \times \vec{b}\|_{\infty} \leq n \cdot \|\vec{a}\|_{\infty} \cdot \|\vec{b}\|_{\infty}\), hence

\[
\|\vec{e}\|_{\infty} = \|Q(\vec{e}_1', \ldots, \vec{e}_\ell')\|_{\infty} \leq (\max_i \|\vec{e}_i\|_{\infty})^{\sqrt{n}} \cdot n^{\sqrt{n} - 1} \cdot (\# \text{ of terms}) \leq (pn \log n)^{\sqrt{n}} n^{2\sqrt{n}} \leq (pn \log n)^{4\sqrt{n}} \ll \tau/4.
\]

So by Claim 1 decryption will recover \(\vec{e} = Q(\vec{e}_1', \ldots, \vec{e}_\ell')\), and therefore also \(Q(\vec{m}_1, \ldots, \vec{m}_\ell)\).
3 Security of Gentry’s SWHE Scheme

Claim 3. The scheme is CPA-secure if for \(\vec{v} \leftarrow (\tau, 0, \ldots, 0) + [\mathcal{N}(0, \sigma^2)^n] \) it is hard to distinguish \([\mathcal{N}(0, \rho^2)^n] \mod B\) from a uniform integer vector \(\mod B\), where \(B \) is the HNF of the lattice \(\Lambda(\vec{v}) \), assuming \(\det(V) \) is odd.

Before we prove the claim we need to play a bit with some algebra. Let \(V \) be the rotation basis of \(\vec{v} \) and denote \(d = \det(V) \). We know that \(d \neq 0 \). Assume \(d \) is odd, an denote the adjoint matrix of \(V \) by \(A = dV^{-1} \), \(A \) is an integer matrix as it is the adjoint of an integer matrix. Let \(\vec{a} = (a_0, \ldots, a_{n-1}) \) be the first row of \(A \). On one hand, since \(AV = dI \) we have \(\vec{a}V = (d, 0, \ldots, 0) \), which is in fact the constant polynomial \(d \in R_n \). On the other hand we have

\[
\vec{a}V = \sum_{i=0}^{n-1} a_i(x^i\vec{v}) = \sum_{i=0}^{n-1} (a_ix^i) \times \vec{v} \mod (x^n + 1) = \vec{a} \times \vec{v} \in R_n.
\]

It follows that \(\vec{a} \times \vec{v} = d \) (the constant polynomial \(d \)). Note that \(x\vec{a} \times \vec{v} = x\vec{d} = (0, d, 0, \ldots, 0) \), hence the second row of \(A \) is \(x\vec{a} \). In fact \(A \) is the rotation basis of \(\langle \vec{a} \rangle \), and \(\vec{a} \) is the scaled inverse of \(\vec{v} \).

Now, since \(d \) is odd, \(\frac{d-1}{2} \in \mathbb{Z} \), and we can consider the constant polynomial \(\frac{d-1}{2} \in R_n \). It holds that

\[
\vec{a} \times \vec{v} - 2\frac{d-1}{2} = d - (d-1) = 1 \in R_n,
\]

namely the polynomials \(\vec{a} \) and \(2 \) are coprime in \(R_n \). It follows that the map \(\vec{x} \mapsto 2\vec{x} \mod \langle \vec{a} \rangle \) is a permutation.

What do we actually mean by \(\vec{x} \mapsto 2\vec{x} \mod \langle \vec{a} \rangle \)? Since \(\langle \vec{a} \rangle \) is an ideal in \(R_n \), we can consider the quotient ring \(R_n/\langle \vec{a} \rangle \) and the natural projection \(R_n \rightarrow R_n/\langle \vec{a} \rangle \). Now \(\vec{x} \mod \langle \vec{a} \rangle \) is simply the image of this projection (by abuse of notation we write \(\vec{x} \mod \langle \vec{a} \rangle \)). We can look at the doubling map over \(R_n/\langle \vec{a} \rangle \), sending \(\vec{x} \in R_n/\langle \vec{a} \rangle \) to \(2\vec{x} \in R_n/\langle \vec{a} \rangle \). Since \(2 \) and \(\langle \vec{a} \rangle \) are coprime in \(R_n \), \(2 \) has an inverse \(\frac{1}{d} \in R_n/\langle \vec{a} \rangle \). Thus doubling induces a permutation on \(R_n/\langle \vec{a} \rangle \):

\[
2\vec{x} \times \frac{1-d}{2} = \vec{x} \times (1 - \vec{a} \times \vec{v}) = \vec{x} \mod \langle \vec{a} \rangle.
\]

Two polynomials \(\vec{a}, \vec{b} \in R_n \) are congruent \(\mod \langle \vec{a} \rangle \) if \(\vec{a} \equiv \vec{b} \mod \langle \vec{a} \rangle \), i.e. there is some \(\vec{u} \in R_n \) such that \(\vec{a} = \vec{b} + \vec{u}V \), however \(\vec{u}V = \vec{u}V \), hence \(\vec{a}, \vec{b} \) are congruent \(\mod \langle \vec{a} \rangle \) iff \(\vec{a}, \vec{b} \) are congruent \(\mod B \), and we can conclude that the mapping \(\vec{x} \mapsto 2\vec{x} \mod V \) is a permutation on \(R_n/\langle \vec{a} \rangle \). We are now ready to prove claim 3.

Proof of Claim 3. Let \(\mathcal{A} \) be a CPA adversary with advantage \(\epsilon \). We will show how to utilize it and construct a distinguisher between \(([\mathcal{N}(0, \rho^2)^n] \mod B) \) from a uniform integer vector in \(\mathcal{P}(B) \), where \(\vec{v} \) is chosen as in the key generation algorithm of the scheme and \(B \) is the HNF basis of \(\langle \vec{a} \rangle \).

Given \(B \) and \(\vec{x} \), we need to decide if \(\vec{x} \) is uniform \(\mod B \) or Gaussian \(\mod B \). We give \(\mathcal{A} \) the basis \(B \) as public key, and \(\mathcal{A} \) gives us two bits \(m_0, m_1 \). We choose a random bit \(b \in \{0, 1\} \), and give \(\mathcal{A} \) the ciphertext \(\vec{c} = 2\vec{x} + (m_b, 0, \ldots, 0) \mod B \). When \(\mathcal{A} \) returns a bit \(b' \) we output 1 if \(b = b' \) and 0 otherwise.

If \(\vec{x} \) is Gaussian then this is a perfect simulation of the scheme, hence \(\mathcal{A} \) guesses correctly with probability \(\frac{1}{2} + \epsilon \).

If \(\vec{x} \) is uniform \(\mod B \) then \(2\vec{x} \mod B = (2\vec{x} \mod V) \mod B \), and since \(\vec{x} \mod V \) is uniform in \(\mathcal{P}(V) \) and doubling is a permutation, then \(2\vec{x} \mod V \) is also uniform in \(\mathcal{P}(V) \), hence \(2\vec{x} \mod B \) is uniform in \(\mathcal{P}(B) \). It follows that \(2\vec{x} + m_b \mod B \) is uniform in \(\mathcal{P}(B) \) regardless of \(b \). Therefore \(\mathcal{A} \) guesses correctly in this case with probability \(\frac{1}{2} - \epsilon \). \(\square \)
So how hard is it to distinguish between uniform and Gaussian mod B? We don’t really know, however one way is to solve the BDD problem for the Gaussian case. Note that when \vec{x} is Gaussian then w.h.p. $\|\vec{x}\| \sim \rho$, whereas

$$\det(\Lambda(V)) \leq \prod_{i=0}^{n-1} \|x^i v\| \leq (\tau + \sigma \log n)^n < (2\tau)^n.$$

It follows that the ratio between the error distance (\vec{c}, Λ) and $\sqrt[n]{\det(\Lambda)}$ is

$$\frac{\sqrt[n]{\det(\Lambda)}}{\rho} < \frac{2\tau}{\rho} < 2^4 \sqrt{n},$$

and we do not know how to solve BDD with this ratio.

References

