We show the main part of Regev’s [Reg09] proof that (under certain conditions) it is possible to relate the average-case hardness of the learning with errors problem (LWE) to the worst-case hardness of bounded distance decoding in a given lattice (BDD).

Preliminaries. We use the following parameters:

- \(n\) - security parameter.
- \(\alpha\) - noise parameter (\(= \frac{1}{\text{poly}(n)}\)).
- \(q\) - modulus (\(\gg \frac{1}{\alpha}\), sometimes even \(q = \exp(n)\)).

Recall that for a continuous distribution \(D_r\) (with standard deviation \(r\)), \(\tilde{D}_{L,r}\) denotes a discrete distribution over a lattice (or coset of a lattice) \(L\) such that every vector \(\vec{z} \in L\) has probability mass proportional to \(D_r(\vec{z})\).

1 The Main Lemma

In addition to an oracle that solves LWE, the reduction from BDD to LWE also needs access to an oracle that samples short vectors in \(\Lambda^\ast\) (Regev [Reg09] and Peikert [Pei09] show how to construct such an oracle in specific settings). Additionally it relies on the following properties of the LWE error distribution:

- The LWE error distribution is a projection of a spherical distribution \(D_{\alpha q}\) onto its first coordinate.
- The distribution \(D_{\alpha q}\) is smooth in the following sense: If \(\Lambda\) is some lattice (or coset of a lattice) with \(\Lambda_n(\Lambda) \ll \alpha q\) then if we choose \(\vec{x} \leftarrow \tilde{D}_{\Lambda,r}\) and \(\vec{y} \leftarrow D_s\) such that \(r^2 + s^2 = (\alpha q)^2\) then the induced distribution on \(\vec{x} + \vec{y}\) is close to \(D_{\alpha q}\).

For example the \(n\)-dimensional discrete Gaussian has these properties (where \(\Lambda_n \ll \alpha q\) means \(\Lambda_n \cdot \omega(\sqrt{\log(n)}) < \alpha q\)). In this case the LWE error distribution is just the one-dimensional Gaussian.

Lemma 1 ([Reg09]). There is an efficient algorithm that takes as input a basis \(B\) of an \(n\)-dimensional lattice \(\Lambda = \Lambda(B)\), another parameter \(r \gg \frac{q}{\sqrt{n(\Lambda)}}\) and a point \(\vec{x} \in \mathbb{R}^n\) such that \(\text{dist}(x, \Lambda) < \frac{\alpha q}{\sqrt{2r}}\) and has access to two oracles:

- A “global” solver for LWE\([n, \alpha, q]\) (“global” in the sense that it is unrelated to the input lattice).
- A “lattice specific” sampler from \(D_{\Lambda^\ast,r}\).

The algorithm finds (with overwhelming probability) the (unique) point \(\vec{v} \in \Lambda\) closest to \(\vec{x}\).

2 Proof Sketch of Lemma 1

Let \(\vec{v} \in \Lambda\) be the closest point to \(\vec{x}\) in \(\Lambda\) and let \(\vec{t} \in \mathbb{Z}^n\) be the coefficients of \(\vec{v}\) when expressed in basis \(B\) (i.e., \(\vec{v} = B\vec{t}\)) and denote \(s \overset{\text{def}}{=} \vec{t} \mod q\). We show a procedure that uses the sampler for \(D_{\Lambda^\ast,r}\) to generate instances of the distribution LWE\(_x\). Then, we use the LWE solver to find \(\vec{s}\). (Note
that \vec{s} was not chosen uniformly at random in this case, but we previously showed a random self reduction for LWE from a random \vec{s} to any specific \vec{s}.) Later we show how from \vec{s} one can find \vec{t} thereby solving BDD.

LWE-Generate(B, \vec{x}) (With access to $\tilde{D}_{\Lambda^*,r}$)

1. Draw a sample $\vec{y} \leftarrow \tilde{D}_{\Lambda^*,r}$. Let \vec{a} be the coefficients of \vec{y} in basis B^* (i.e. $\vec{a} = B^T \vec{y}$).
2. Draw an error term $e \leftarrow \Phi_\alpha \sqrt{\pi} \frac{\alpha}{\sqrt{\pi}}$.
3. Output $(\vec{a}, b = \langle \vec{x}, \vec{y} \rangle + e \mod q)$.

Claim 1. The output of LWE-Generate is statistically close to LWE\vec{s} except that the error parameter is $\beta \leq \alpha$.

Proof. Need to show:

(A.) \vec{a} is close to uniform in \mathbb{Z}_q^n.

(B.) Once \vec{a} is fixed, $\vec{b} = \langle \vec{s}, \vec{a} \rangle + \Phi_{\beta q}$ ($\beta \leq \alpha$).

(A.) Consider the lattice $q \cdot \Lambda^*$ and all its q^n cosets

$$\vec{a}$$-coset $= \{ B^* \vec{a} + q \Lambda^* \} = \{ B^* \vec{z} : \vec{z} = \vec{a} \mod q \}$

The vector \vec{a} output by the procedure is exactly the coset of \vec{y}. Due to our choice of parameters, all cosets are (almost) equally likely. Indeed, since $r \gg q \lambda_1(\Lambda) = q \lambda_n(\Lambda^*)$ then $\tilde{D}_{\Lambda^*,r}$ is nearly uniform among the cosets.

(B.) Conditioned on any fixed $\vec{a} \in \mathbb{Z}_q^n$, the vector \vec{y} is chosen from the discrete distribution $D_{q \Lambda^* + \vec{a},r}$ on the \vec{a}-coset. Denoting $\vec{w} \overset{\text{def}}{=} \vec{x} - \vec{v}$ we have

$$\langle \vec{x}, \vec{y} \rangle = \langle \vec{v} + \vec{w}, \vec{y} \rangle = \langle \vec{v}, \vec{y} \rangle + \langle \vec{w}, \vec{y} \rangle = \langle B\vec{v}, \vec{y} \rangle + \langle \vec{w}, \vec{y} \rangle = \langle \vec{t}, B^T \vec{y} \rangle + \langle \vec{w}, \vec{y} \rangle = \langle \vec{s}, \vec{a} \rangle + \langle \vec{w}, \vec{y} \rangle + e \mod q$$

hence $b = \langle \vec{s}, \vec{a} \rangle + \langle \vec{w}, \vec{y} \rangle + e \mod q$. Notice that \vec{s}, \vec{a} and \vec{w} are fixed and the random part is just \vec{y} and e.

Recall that $\Phi_\frac{\alpha}{\sqrt{\pi}}$ is the projection of $D_{\frac{\alpha}{\sqrt{\pi}}} \alpha$ onto the first coordinate, namely $\langle \vec{e}_1, D_{\frac{\alpha}{\sqrt{\pi}}} \alpha \rangle$ and since D is spherical then this is also the same as $\langle \vec{u}, D_{\frac{\alpha}{\sqrt{\pi}}} \alpha \rangle$ for any other unit vector \vec{u}. In particular, $\Phi_\frac{\alpha}{\sqrt{\pi}} \equiv \langle \vec{w}, D_{\frac{\alpha}{\sqrt{\pi}}} \rangle$.

Hence $\langle \vec{w}, \vec{y} \rangle + e \equiv \langle \vec{w}, \vec{y} \rangle + \langle \vec{w}, \vec{z} \rangle = \langle \vec{w}, \vec{y} + \vec{z} \rangle$ where $y \in R \tilde{D}_{\Lambda^*,r}$ and $z \in R D_s$ where $s = \frac{\alpha}{2 \sqrt{\pi} ||\vec{w}||}$. Now $||\vec{w}||$ is “short” so s is “large”. The parameters r, s are chosen large enough so that $\tilde{D}_{q \Lambda^* + \vec{a},r}$ is close to the continuous D_t where $t = \sqrt{r^2 + s^2}$. Therefore $\langle \vec{w}, \vec{y} \rangle + e \approx \langle \vec{w}, D_t \rangle = \Phi_{||\vec{w}|| \cdot t}$ and the parameters are such that $||\vec{w}|| \cdot t \leq \alpha q$. \qed
To solve BDD for \vec{x} we can apply the LWE-solver with samples from LWE-Generate to find the vector \vec{s}. However, to solve BDD we need to find \vec{t} (recall $\vec{s} = \vec{t} \mod q$). To do this, first observe that $\vec{v} = B\vec{t} = B\vec{s} + B(q\vec{z})$ for some $\vec{z} \in \mathbb{Z}^n$ and consider $\vec{x}' = \frac{\vec{x} - B\vec{s}}{q} = \frac{\vec{x} - \vec{v}}{q} + B\vec{z}$. Notice that by this calculation, the vector \vec{x}' is at distance $\frac{||\vec{w}||}{q}$ (where $\vec{w} = \vec{x} - \vec{v}$) from the lattice (specifically the point $B\vec{z}$). If we could find the closest lattice point to \vec{x}' we would have \vec{z} and therefore also \vec{v}. To do this just repeat the above argument again and again and at each iteration the distance from the lattice is reduced by a factor of q. After n such iterations we can solve the problem by using, e.g., Babai’s nearest plane algorithm.

References

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. JACM, 56(6), 2009.