Zero-One Permanent is #-Complete, A Simpler Proof

Amir Ben-Dor* Shai Halevif
Dept. of Computer Science
Technion

Haifa, Israel 32000
February 22, 1995

*This research was supported by United States-Israel Binational Science Foundation grant 88-00282
TThis research was supported by the Miriam and Aharon Gutwirth memorial fellowship

Abstract

In 1979, Valiant proved that computing the permanent of a Ol-matrix is #P-
Complete. In this paper we present another proof for the same result. Our proof
uses “black box” methodology, which facilitates its presentation. We also prove that
deciding whether the permanent is divisible by a small prime is #P-Hard. We con-
clude by proving that a polynomially bounded function can not be #P-Complete under
“reasonable” complexity assumptions.

1 Introduction

The permanent has been the object of study by mathematicians since first appearing in the
work of Cauchy and Binet in 1812. Despite its syntactical similarity to the determinant,
no efficient procedure for computing the permanent is known. In 1979, Valiant provided
a reason for this difficulty. In a landmark paper ([Val79a]) he showed that the permanent
function is complete for the class #P of enumeration problems. Moreover, Valiant proved
that even for Ol-matrices, the problem remains #P-Complete.

Valiant’s proof has two parts. In the first part, a many-one reduction from counting
the number of satisfying assignments for a CNF formula to computing the permanent of an
integer matrix is presented. In the second part, Valiant proved (using the Chinese Remain-
der Theorem) that computing the permanent of an integer matrix can be done efficiently
given access to an oracle that computes the permanent of 01-matrices. This reduction uses
polynomially many queries to the 01-permanent oracle.

The proof we present here is similar in some ways to the original proof. In particular, it
also consist of two parts as the original proof. There are, however, some differences between
our proof and the original one. In the first part, we use a “black box” approach, which
simplifies the presentation of the reduction as well as the verification of its validity. First, we
build a gadget with some desirable properties. Then we construct a graph using many copies
of that gadget, one per every clause in the original 3-CNF formula. We use the properties of
the gadget (as a “black box”) to prove the correctness of our construction. The construction
of the gadget itself (and the proof of its properties) is described separately. In retrospect one
may observe that the first part of Valiant’s reduction could also be presented using “black
box” approach.

In the second part, we prove that computing the permanent of an integer matrix can be
done efficiently using a single query to an oracle that computes the permanent of 01-matrices.
This is done in three steps.

1. First, we reduce the integer permanent problem to the problem of computing the
permanent of a non-negative integer matrix.

2. Next, we reduce the non-negative permanent problem to the problem of computing the
permanent of an integer matrix, with entries that are either zero or powers of two.

3. Finally, we reduce the last permanent problem to the 01l-permanent problem.

The reductions we present in the second part are all many-one. A different and somewhat
more complicated many-one reduction was presented in [Zan91].

In the rest of the paper we consider the problem of deciding whether Perm(A) =
0 (mod p) for a given matrix A and integer p. We show that this problem is #P-Hard,
even when the integer p is presented in unary. This is done by presenting an algorithm that
computes Perm(A) modulo p using an oracle that decides whether Perm(A) = 0 (mod p)
(and using the Chinese Remainder Theorem). It was shown in [VV85] that computing
Perm(A) modulo k for any fixed k that is not a power of two is NP-Hard (with respect
to randomized polynomial reductions). From our algorithm it follows that for any prime
p # 2, deciding whether Perm(A) = 0 (mod p) is also NP-Hard with respect to the same
reductions.

Finally, we prove that polynomially bounded functions can not be #P-Complete (under
some “reasonable” complexity assumptions).

2 Preliminaries

We define the notions #P and #P-Hardness as usual [Val79b].

Definition 1: Let f be a function f : ¥* — N. We say that f € #P if there exists a
binary relation T'(-,-) such that

e If (x,y) € T then the length of y is polynomial in the length of .

e [t can be verified in polynomial time that a pair (x,y) is in 7.

o forevery x € ¥*, f(z)=|{y : (v,y) €T} |
Definition 2:

e Given two functions f,g: ¥* — N, we say that there is a polynomial Turing-reduction
from ¢ to f (and denote g x f) if the function ¢ can be computed in polynomial time
using an oracle to f. We say that there is a many-one reduction from g to f if one call
to the f-oracle suffice.

o A function f : ¥* — N is #P-Hard if for every ¢ € #P there is a polynomial reduction
g o< f.
o A function f is #P-Complete if it is both #P-Hard and in #P.

It was shown in [Val79b] that the problem of counting the number of satisfying assignments
for a 3-CNF formula is #P-Complete, with respect to many-one reductions. Let us denote

this problem by #3-SAT.

Definition 3: Given a n X n matrix A, the permanent of A is defined as

Perm(A) def Z H Ui o (i)

o =1
where the summation is over the n! permutations of {1,2,... n}. We denote the problem
of computing the permanent of a 01-matrix by 01-Perm.

Throughout the paper we refer interchangeably to matrices and their corresponding
weighted directed graphs.

Definition 4: We say that a n-node weighted directed graph G and a n x n matrix A
correspond to one another if for every 1,7 € {1,...,n}, A, is the weight of the edge 1 — .

Definition 5: A cycle-cover of a weighted directed graph G = (V, F) is a subset R C £
that forms a collection of node-disjoint directed cycles that cover all the nodes of G. The
weight of R, denoted by W (R), is the product of the weights of the edges in R.

From the above definitions it follows that if G is a weighted directed graph that correspond
to a matrix A, then the permanent of A equals to the sum of weights of all the cycle-covers
of G. We use Perm((G) to denote this sum.

3 Main Result

We present another proof for the following result (that was proved in [Val79a] combined with
[Zan91]).

Theorem 1: 01-Perm is #P-Complete (with respect to many-one reductions).

Proof sketch: Let ¢ be a 3-CNF formula with n variables and m clauses. We denote by
S(¢) the number of satisfying assignments of ¢. The reduction goes as follows:

e First we construct a weighted directed graph (7, with weights from the set {—1,0, 1,2, 3}
and size linear in m and n such that

Perm(Gy) = 12" - S(9)

The graph G, can be constructed from ¢ in polynomial time. The construction is
described in Section 4. This construction proves that computing the permanent of an
integer matrix is #P-Hard (with respect to many-one reductions).

e In order to prove that 01-Perm is #P-Complete (with respect to many-one reductions),
we describe in Section 5 a chain of three transformations from an integer matrix to a
0l-matrix that maintain the permanent of the matrix.

Therefore, there is a many-one reduction from #3-SAT to 01-Perm.

4 Constructing G, for a formula ¢

Given a 3-CNF formula ¢ with m clauses and n variables, we construct a weighted directed
graph G, such that there is a mapping between assignments for ¢ and cycle-covers in G.
This mapping satisfies the following conditions:

e The sum of weights of all the cycle-covers that correspond to each satisfying assignment
of ¢ equals 12™.

e The sum of weights of all the other cycle-covers equals 0.

Clearly, this graph satisfies Perm(Gy) = 127 - S(¢).

In the construction of GGy we use a special clause component as a “black box”. The graph
(4 consist of m clause components (one for each clause in ¢), and n additional nodes (one
for each variable in ¢). Assuming the clause component has some desirable properties, we
prove that Perm(Gy) = 12™ - S(¢). In Appendix A we describe the structure of the clause
component (which is independent of ¢), and prove its properties. We remark that Valiant’s
construction yields a different constant (4°) rather then 12.

4.1

Construction of G4 Using Clause Components

The graph G is constructed as follows:

o Lor each variable x; in ¢ there is a node in G,. We refer to theses nodes as variable

nodes.

For each clause ¢; = (a1 V ay V a3) in ¢, there is a clause component in Gy, denoted
by H;. The clause component has three input edges labeled Iy, I3, I3, and three output
edges labeled O, O3, O3. These edges connect the component to other components or
to variable nodes. Intuitively, the edges I}, and Oy (1 < k < 3) of H; correspond to the
literal o in ¢;.

For each variable z; in ¢ we form two “cycles” in the graph G.

— Let ¢j,,...,¢j, be the clauses that contain the literal x; in the order they appear
in ¢. The T-cycle of x; starts at the variable node x;, visits the clause components
H; ..., H;, and goes back to z;. If x; is the k’th literal in a clause ¢;, then the
T-cycle of x; enters H; through the input edge I}, and exits it through the output
edge Oy.

— Let ¢y, ..., ¢j be the clauses that contain the literal =z; in the order they appear
in ¢. The F-cycle of x; starts at the variable node x;, visits the clause components
Hy ..., Hj in a similar way and goes back to ;.

Formally, there is an edge from the output edge Oy, of H;, to the input edge Iy, of H,,
if the next occurrence of the ky’th literal of the clause ¢;, is as the ky’th literal of the
clause ¢;,.

If the literal x; does not appear in ¢, then the T-cycle of x; is a self loop, and the same
goes for —x;. The weights of all the edges in the T'-cycles and F'-cycles of every literal
are one.

We call the edges inside the clause components internal edges and the edges between the
clause components (or between clause components and variable nodes) external edges. Notice
that every external edge belong to either the T-cycle or the F-cycle of some variable. An
example of a graph G, for some formula is presented in Figure 1.

4.2 Correspondence between assignments and cycle-covers

The construction of Gy yields a natural correspondence between cycle-covers in G, and
assignments for ¢.

Definition 6: We say that a cycle-cover R of Gy induces an assignment v if for each
variable x in ¢ holds:

o If v(x) = TRUFE then R contains all the external edges in the T-cycle of & and none

of the external edges in the F-cycle of x.

Figure 1: The graph G for the formula ¢ = (x1 V 23 V ma3) A (may V 22 V a3).
T-cycles are solid and F-cycles are dashed.

o If v(x) = FALSFE then R contains all the external edges in the F-cycle of & and none
of the external edges in the T-cycle of x.

Observation 1:
o There are cycle-covers of GGy that do not induce any assignment.

o Lvery cycle-cover of Gy can induce at most one assignment, as two different assignments
must have at least one variable on which they disagree.

o All the cycle-covers that induce the same assignment agree on their external edges.

Intuitively, the structure of Gy ensures that the clause component H; contributes a
multiplicative factor of 12 to the weight of the cycle-covers that induce an assignment which
satisfies the clause ¢;, and a multiplicative factor of zero to the weight of the cycle-covers that
do not induce such assignment. To formalize this intuition, we need the following definition.

Definition 7: We say that a cycle-cover is proper with respect to a clause component H if
1. At least one of H’s input edges is in K.

2. For every 1 < k <3, the edge I is in R if and only if the edge Oy is in R

The clause component is constructed such that it contributes a multiplicative factor of 12
to the weight of cycle-covers that are proper with respect to it, and a multiplicative factor
of zero to the weight of the other cycle-covers.

Lemma 1: A cycle-cover R induces a satisfying assignment if and only if R is proper with
respect to every clause component in G.

Proof: We first show that a cycle-cover that induces a satistying assignment is proper with
respect to every clause component in Gy. Let R be a cycle-cover that induces a satisfying
assignment v. Let ¢ be a clause in ¢ and H be the corresponding clause component. Consider
the literal oy in ¢;, assume w.l.o.g. that oy = ;.

If v(z;) = TRUE, then R contains all the external edges in the T-cycle of x;. By
definition of the T-cycle of x;, it contains both the external edges I and Oy of H. Hence
these edges are in R.

Otherwise, v(x;) = FALSE, so R does not contain any of the external edges in the
T-cycle of x;. Therefore, neither I, nor Oy of H are in R.

It follows that for each literal a; in every clause, either both [, and Oy are in R (If ay is
satisfied by v), or neither I nor Oy are in R (If «y is not satisfied by v). Hence R satisfies
the second condition in the definition of properness, with respect to every clause component.
As v is a satistying assignment for ¢, every clause ¢ has at least one literal that is satisfied by
v. Thus the input edge of H that corresponds to that literal must be in R. Thus R satisfies
the first condition as well.

We now show that a cycle-cover that is proper with respect to every clause component
must induce a satisfying assignment. Let R be a cycle-cover that is proper with respect to
every clause component. We define an assignment v, so that a variable z in ¢ is assigned
true if the external edge in R that goes out of the variable node z; belongs to its T-cycle
and false otherwise. Let x be some variable in ¢.

If v.(x) = TRUF then the first edge in the T-cyecle of x is in R. Notice that it implies
that the first edge in the F-cycle of x is not in R (since R is a cycle-cover). Let ¢ be a clause
that contains either or =z and let H be the corresponding clause component. Since R is
proper with respect to H, either both the input and output edges that correspond to that
literal are in R, or neither are. It follows by easy induction that all the edges in the T-cycle
of « and none of the edges of the F-cycle of x are in R. The case where v, (2) = FALSE is
treated similarly. Therefore, R induces the assignment v ,.

Finally we show that the assignment v, satisfies ¢. Again, let ¢ be a clause in ¢ and
H be the corresponding component clause. As R is proper with respect to H, at least one
input edge of H is in R. Therefore, H must be on some T-cycle or F-cycle of some variable.
Hence, the corresponding literal in ¢ must be satisfied by v,. Thus R induces v, which is a
satisfying assignment. []

4.3 The properties of the Clause Component

As the condition of Lemma 1 depends only on the external edges, we can partition the
cycle-covers of Gy according to their use of external edges. Formally we have

Definition 8: Let F' be a subset of external edges. We say that a set of internal edges C is
a F-completion if FUC is a cycle-cover of Gg. We denote by CI" the set of all F-completions,
and by R we denote the set of resulting cycle-covers of (G45. Note that C¥' may be empty.

Since the weight of every external edges in (74 is one, the weight of every cycle-cover R € RY
equals to the product of the weights of its internal edges. Therefore for every set I of external

edges we have
> W(Rr)= 3, W(C)

ReRF cecr

We can partition the edges in every F-completion according to their membership in the
different clause components. For every F-completion €', we denote by C; the set of internal
edges in C' from the clause component H;. Also, we denote the set {C;|C' € C"'} by CF.

Observation 2: For every subset F' of external edges, the internal edges in different clause
components can be chosen independently to form a F-completion. This is because internal
edges in different clause components never share a common node. Therefore, we can compute
the sum Y ¢ cer W(C') by computing ZCJGCJF W (C;) for each clause component H;, and then
multiplying these sums. That is, for every F

2. W)= 11 > w(c)

cecr 1<j<m ¢yeck

The properties of the clause component can be expressed as constraints on £'-completions.
Let F' be a set of external edges in GGy and H; be some clause component in G:

e If F'is proper with respect to H; then Y ccor W(C') = 12.
o Otherwise Y ncor W(C) = 0.

In Appendix A we describe a T-node component with weights from the set {—1,0,1,2,3}
that satisfy these conditions.

Lemma 2: For each 3-CNF formula ¢ with m clauses, the graph (G4 satisfies
Perm(Gy) = 12" - S(¢)
Proof: The proof follows from these two claims :

1. For each satisfying assignment v, the sum of weights of all the cycle-covers that induce
v equals 12™,

2. The sum of weights of all the other cycle-covers equals zero.

Proof of clatm 1: Let v be a satisfying assignment for ¢. Recall that all the cycle-covers
that induce v agree on their external edges. Let us denote this set of external edges by F,.
Notice that the set of the cycle-covers which induce v is exactly R**. From Observation 2

we get
> W= W)=][> W)
RER: Ccech 1<j<m ¢ et

Since v is a satisfying assignment, F, is proper with respect to every clause component.
From the properties of the clause component we have that for every j, 3. o W(C}) = 12,
I~

and the proof of the first claim follows.

Proof of claim 2: Consider now the cycle-covers that do not induce any satisfying assign-
ment. We partition these into equivalence classes according to their use of the external edges
of Gy. Let I be a subset of external edges that is used by such equivalence class. Note that
the equivalence class is exactly RY.

Since the cycle-covers in RY do not induce any satisfying assignment, it follows that F
is not proper with respect to at least one clause component H;. From the properties of the
clause component we have for this j, Zcech W(C) = 0. Thus, we have

Y W= Y WEe)= [X W(E)=0

RERF cect 1<j<m ¢yeck

and the proof of the second claim follows. (]

5 01-Perm is #P-Complete

In the previous section we have proved that computing the permanent of an integer matrix is
#P-Hard with respect to many-one reductions. Let us define the following three problems:

e [ntPerm - Given an integer matrix A, compute Perm(A).
e NoNegPerm - Given a nonnegative integer matrix A, compute Perm(A).

o 2PowersPerm - The same as NoNegPerm, where A entries can only be zeros or powers

of 2.

To show that computing the permanent of a 01-matrix is #P-Complete, we show the follow-
ing chain of polynomial time many-one reductions

IntPerm o« NoNegPerm o 2PowersPerm o« 01Perm

5.1 A Reduction from IntPerm to NoNegPerm

Let A be an n x n integer matrix in which no entry is larger than p in magnitude. From
the definition of the permanent it follows that |Perm(A)| < n!- p™. To compute Perm(A)
it is sufficient to compute its value modulo Q) for) > 2n!- ™. Formally, given A we do the
following :

e compute Q) =2n!- " +1.

e compute A’ = Amod Q).

e compute P = Perm(A’) mod Q.

o if P <@Q/2then Perm(A)= P. Otherwise Perm(A) =P — Q.

Notice that the transformation from A into A’ is polynomial in n and log y, as the number
of bits that is needed to write () is polynomial in n and log .

Xr

x1 X2
WE =2 +2 +...+2
(W O

Figure 2: Transforming an edge with weight w

5.2 A Reduction from NoNegPerm to 2PowersPerm

Let GG be a n-node weighted directed graph with non-negative weights, where the largest
weight in G is W. We describe a transformation from G into weighted directed graph G’
such that the weights in G’ are powers of 2, and Perm(G) = Perm(G'). The size of G’ is
polynomial in n and log W. The transformation is performed locally on each edge e in G.
The edge € is replaced by a subgraph L.. Each replacement maintains the permanent of the
graph.

Let e = (u,v) be an edge in G with weight w. we can represent w as a sum of increasing
powers of 2 -

w=2"4224... 427 0< 1 <29+ < 2, < logw

The subgraph L. is composed of r nodes, and 3r edges (As in Figure 2).
There is a natural correspondence between cycle-covers of G and cycle-covers of G’ :
Consider some cycle-cover R in ¢

o If eisnot in R then the only way to cover the new nodes in L, is to use all the self-loops.
As the weight of all the self-loops is 1, the weight of the corresponding cycle-cover R’
equals the weight of R.

e On the other hand, if e = (u,v) is in R then in all the corresponding cycle-covers in
G’ there must be a path from u to v. There are r such cycle-covers , each corresponds
to a different path from u to v. As the sum of the weights of these paths equals the
weight of e, the sum of the weights of the corresponding cycle-covers equals the weight

of R.]

10

@ W(e)=2" @

Figure 3: Transforming an edge with weight 2"

5.3 A Reduction from 2PowersPerm to 01-Perm

Let G be a n-node weighted directed graph where all the weights in G are powers of 2,
with maximal weight 27. We describe a transformation from G into a digraph G’ (with 0-1
weights), Such that Perm(G) = Perm(G’). The size of G/ is polynomial in n and p. This
transformation is also performed locally on each edge e in G. Every edge with weight > 1 is
replaced by a subgraph J.. Each edge in J. has weight one, therefore the resulting graph G’
is an unweighted directed graph. Each replacement maintains the permanent of the graph.

Let e = (u,v) be an edge in ¢ with weight w = 2" > 1. The subgraph J, is composed of
2r nodes and 6r edges (As in Figure 3).

There is a natural correspondence between cycle-covers of G and cycle-covers of G'.
Consider some cycle-cover R in ¢

o If e is not in R then the only way to cover the new nodes in J, is to use all the self-
loops. As the weight of all the edges is 1, the weight of the corresponding cycle-cover
R’ equals the weight of R.

e On the other hand, if e = (u,v), with weight w = 27, is in R then in the corresponding
cycle-covers of GG' there must be a path from u to v. There are 2" such possible cycle-
covers, each corresponds to a different path from u to v. As each path has weight 1,
the sum of weights of all these cycle-covers equals the weight or R.]

11

6 Related Topics

6.1 Computing the Permanent Modulo p

We know that computing the permanent of a 01-matrix is hard, yet deciding whether this
permanent equals zero is easy. We consider the following variant of the above decision
problem: Given a 0l-matrix A and an integer p, is Perm(A) = 0 (mod p) 7 We show that
this problem is #P-Hard. First we show that this problem is hard for integer matrices, and
then we use the reduction from Section 5 to show that it is also hard for 01-matrices.

Clearly, given an oracle that computes Perm(A) mod p (for every A and p), one can
compute Perm(A) by choosing a large enough p. Notice also that using the Chinese Re-
mainder Theorem, it is sufficient to compute Perm(A) mod p for primes that are smaller
than n?log u, where n is the size of A and p is the magnitude of the largest entry in A.
The only thing left to show is how to compute Perm(A)mod p using an oracle that decides
whether Perm(A) = 0 (mod p).

Definition 9: The language ModPerm is defined as follows
ModPerm & {< A,p>|Perm(A) =0 (mod p)}

where A is an integer matrix, and p is an integer. The language 01-ModPerm is defined
similarly where A is a 01-matrix.

The difficulty in using an oracle to ModPerm is that it seems hard to change the per-
manent of a given matrix by additive factor. Notice that it is fairly simple to compute
Perm(A) mod p using an oracle that decides whether Perm(A) = 1 (mod p): One can
simply multiply the first row of A by 2 over and over again, until the permanent equals 1
(mod p). This trick does not work with oracle to ModPerm. In the following lemma we show
an algorithm that computes Perm(A) mod p using an oracle to ModPerm.

Lemma 3: Let A be a nxn integer matrix, and let p be a prime. Computing Perm(A) modp
can be done in time polynomial in n and p using at most pn + %nz calls to a ModPerm oracle.

Proof: We give a constructive proof, by describing a recursive algorithm that computes
Perm(A) mod p using a ModPerm oracle.

For a 1 x 1 matrix, Perm(A) mod p can be computed directly. For n > 1, we consider
two cases:

1. Perm(A) =0 (mod p). In this case, one call to the ModPerm oracle is sufficient.

2. Perm(A) # 0 (mod p). In this case, there is at least one minor of A, denoted by Al
such that Perm(A7) Z 0(mod p). Using at most n calls to the oracle, find that minor.
Assume w.l.o.g. that this minor is A}. The algorithm continues as follows:

e Compute Perm(A7) mod p recursively.

12

e Define a sequence of p — 1 matrices {Bz}f:_ll For every 1 <7 < p— 1, the matrix
B; is identical to A, except that b;; = ay1 4+ 2. Clearly, for every B; holds

Perm(B;) = Perm(A) + 1 - Perm(A%)

As Perm(A}) # 0 (mod p), and p is a prime, there is a unique index ¢ such that
Perm(B;) = 0 (mod p). Note that

Perm(A) = —i- Perm(A7) (mod p)

Using at most p — 1 additional calls to the oracle, find that index, (denoted by 7)
and return (—i - Perm(A})) mod p.

The number of calls to the oracle is given by the recurrence T'(n) < n +T(n — 1) 4 p which
yields T'(n) < pn + in’. L]
Corollary 2: The language ModPerm is #P-Hard.

Using the last two reductions from Section 5 we get,
Corollary 3: The language 01-ModPerm is #P-Hard.

Proof: We show a reduction ModPerm o< 01-ModPerm. Given a matrix A and an integer
p -
e Compute the matrix A" = A mod p.

e Use the reductions from Section 5 on the matrix A’, and get a 01-matrix A” such that

Perm(A") = Perm(A') = Perm(A) (mod p).

e Use an oracle to the language 01-ModPerm, on the input < A”,p > to decide whether
Perm(A) =0 (mod p).

It was shown in [VV85] that computing Perm(A) modulo k for any fixed k that is not
a power of two is NP-Hard (with respect to randomized polynomial reductions). Applying
our algorithm, we get

Corollary 4: for every prime p > 2, the language
ModPerm, LA Perm(A) =0 (mod p)}

is NP-Hard with respect to randomized polynomial reductions.

13

6.2 Polynomially bounded functions can not be #P-Complete

All known #P-Complete functions have exponentially large range. On the other hand, it
is easy to construct #P functions with small range, but these functions appear to be easy
to compute. We conjecture that #P functions can not have small range unless they can be
computed efficiently. We give support to this conjecture, by showing that under “reasonable”
complexity assumptions, polynomially bounded functions can not be #P-complete. We
remark that there exist even binary functions that are #P-Hard, (e.g., ModPerm). It follows
that, under the same complexity assumptions, such functions can not be in #P.

Recall that, by definition, PN C P#P. Moreover, Toda showed ([Tod89]) that the
entire polynomial time hierarchy is contained in P#F. Therefore, if PN = P#P then the
polynomial time hierarchy collapses into %%

Lemma 4: Assuming PVP - P#P & polynomially bounded function can not be #P-
Complete.

Proof: Assume, towards a contradiction, that there is a #P-Complete function f :
{0,1}* — N such that for every x € {0,1}*, f(z) < Q(|z|) where Q(-) is some polynomial.
We define the language Ly as follows:

Ly {<a k> f(z) >k}

Clearly, one can compute f efficiently given an oracle to Ly. As f € #P, there is a binary
relation T such that f(z) = | {y: (2,y) € T } |. Therefore Ly can be represented as
follows:

Lf:{<:z;,k>

there exist £ distinct
y’s such that (z,y) €T

Since k can be bounded by Q(|x]), it follows that Ly € NP. This is because a nondeterministic
polynomial TM can guess k distinct y’s and verify that for each of them holds (z,y) € T.
As f can be computed efficiently using a Ls-oracle and f is #P-Hard, it follows that

P#P — Pf g PLf g PNP

This contradicts the assumption PNF - P#E, (]

Acknowledgment: Thanks to Amos Beimel, Benny Chor, Oded Goldreich, Lee-Bath Nel-

son, and Erez Petrank for their useful comments.

References

[Tod89] Toda S., “On the Computational Power of PP and ®&P”, Proc. 30th IEEE Symp.
on Foundations of Computer Science (1989), pp. 514-519.

[Val79a] Valiant L.G., “The Complexity of Computing the Permanent”, Theoretical Com-
puter Science, Vol. 8 (1979), North-Holland Publishing Company, pp. 189-201.

14

[Val79b] Valiant L.G., “The Complexity of Enumeration and Reliability Problems”, STAM
J. Comput., Vol 8, No. 3 (1979), pp. 410-421.

[VV85] Valiant L.G., Vazirani V.V., “NP is as easy as detecting unique solutions”, Proc.
17th ACM Symp. ot Theory of Computing (1985), pp. 458-463.

[Zan91] Zanko V., “#P-Completeness via Many-One Reductions”, International J. of
Found. of Comp. Sei., Vol 2, No. 1 (1991), pp. 77-82.

A Constructing the Clause Component

The clause component is a 7-node weighted directed graph with weights from the set {—1,0,1,2, 3}.
The input edges I, I3, I3 enter nodes 1, 2 and 3 respectively. The output edges Oy, 03,05
exit from nodes 5, 4, and 3 respectively.

Denoting the corresponding 7 x 7 matrix by A, the properties of this component can be
expressed as a set of constraints on the permanent of A itself and some of its sub-matrices.
Denote by AL the matrix A without the columns I and the rows O, we can write the
constraints on the clause component as follows :

o Whenever all the input and output edges of the component are used, the sum over all
completions in it must equal 12. This can be represented by the equation

Perm(Aé:izg) =12

o Whenever two couples of matching input and output edges of the component are used,
the sum over all completions in it must equal 12. This can be represented by the
equations

Perm(Aizg) =12, Perm(Aézg) =12,
Perm(Aéfl) =12

o Whenever a single couple of matching input and output edges of the component is
used, the sum over all completions in it must equal 12. This can be represented by the
equations

Perm(A}) =12, Perm(A3) =12,
Perm(A3) =12

o Whenever two input edges and two non-matching output edges of the component are
used, the sum over all completions in it must equal 0. This can be represented by the

equations
Perm(Agzg) =0, Perm(A?:i) =0,
Perm(A}lzg) =0, Perm(Aé:i) =0,
Perm(A}lfg) =0, Perm(Aéfg) =0

o Whenever an input edge and a non-matching output edge of the component are used,
the sum over all completionsi it must equal 0. This can be represented by the equations
Perm(A}) =0, Perm(A}) =0,
Perm(A2) =0, Perm(A3) =0,
Perm(A3) =0, Perm(A}) =0

15

o Whenever no input edge and no output edge of the component are used, the sum over
all completions in it must equal 0. This can be represented by the equation

Perm(A) =10

It can be verified that the following 7 x 7 matrix satisfies all these conditions. As the matrix
A satisfies the above constraints, the clause component indeed has the properties we use in
the proof of lemma 2.

Il
O OO oo o =
O OO OO = O
|
[e T e S S s B e S)
— = =N = WO
|
— = = = = O N
O N === O
e i e = R)

16

