
Supporting Private Data on Hyperledger Fabric with
Secure Multiparty Computation

Fabrice Benhamouda
IBM Research

Yorktown Heights, NY, USA
https://www.normalesup.org/∼fbenhamo/

Shai Halevi
IBM Research

Yorktown Heights, NY, USA
https://shaih.github.io/

Tzipora Halevi∗
Brooklyn College

Brooklyn, NY, USA
thalevi@nyu.edu

Abstract—Hyperledger Fabric is a “permissioned” blockchain
architecture, providing a consistent distributed ledger, shared by
a set of “peers.” As with every blockchain architecture, the core
principle of Hyperledger Fabric is that all the peers must have the
same view of the shared ledger, making it challenging to support
private data for the different peers. Extending Hyperledger Fabric
to support private data (that can influence transactions) would
open the door to many exciting new applications, in areas from
healthcare to commerce, insurance, finance, and more.

In this work we explored adding private-data support to
Hyperledger Fabric using secure multiparty computation (MPC).
Specifically, in our solution the peers store on the chain en-
cryption of their private data, and use secure MPC whenever
such private data is needed in a transaction. This solution is
very general, allowing in principle to base transactions on any
combination of public and private data.

We created a demo of our solution over Hyperledger Fabric
v1.0, implementing a bidding system where sellers can list assets
on the ledger with a secret reserve price, and bidders publish
their bids on the ledger but keep secret the bidding price itself. We
implemented a smart contract (aka “chaincode”) that runs the
auction on this secret data, using a simple secure-MPC protocol
that was built using the EMP-toolkit library. The chaincode itself
was written in Go, and we used the swig library to make it
possible to call our protocol implementation in C++.

We identified two basic services that should be added to
Hyperledger Fabric to support our solution, and are now working
on implementing them.

Keywords. Blockchain, Hyperledger Fabric, Implementa-
tion, Secure Multiparty Computation

I. INTRODUCTION

A blockchain is a distributed system for recording history
of transactions on a shared ledger, providing consistency
(i.e., all participants have the same view of the ledger) and
immutability (i.e., once something is accepted to the ledger,
it cannot change). First popularized for crypto-currencies
such as Bitcoin [7], blockchain technology today is gaining
momentum in other areas as well, and is touted by some as
a disruptive change akin to open-source software [6] or even
the Internet [8]. The Hyperledger Fabric [4] is a permissioned
blockchain, where writing to the ledger requires some creden-
tials. The participants that are allowed to write to the ledger
in Hyperledger Fabric are called peers (and typically there are
only a few of them). This setting makes it easier to control

∗ Work partly done while at IBM Research

the transaction on the ledger, and is typically faster than public
blockchains that are used in most crypto-currencies.

Nearly all blockchain architectures support the notion of
smart contracts, namely a programmable application logic that
is invoked for every transaction. In Hyperledger Fabric, these
smart contracts are implemented via chaincode, which can be
an arbitrary program (in Go), executed by (some of) the peers.
The chaincode has access to the current ledger as well as the
details of the new transaction, and it decides whether or not
that transaction will go through, and the data to add to the
ledger.

A. Blockchain with Private Data

In many application scenarios, we would like to use a
blockchain architecture in a setting where some information
is private to some participants and should not be seen by
others. Some examples of applications that require dealing
with private data include the following:

RUNNING MEDICAL STUDIES. Consider multiple hospitals
that want to jointly run statistics on patient treatment data,
e.g., the success rate of a treatment option for patients with
some rare condition. The data is private so the hospitals cannot
share it, and the condition is sufficiently rare that a simple
redaction of PII is not sufficient. We may want to keep all the
treatment data on a joint ledger (e.g., to facilitate logging and
audit requirements), but we must do it in a privacy-preserving
manner. Hospitals that want to run a study on their joint data
should be able to get the results of that study without violating
patient privacy requirements. Namely, we would like to have
a smart contract that can logically see all the data, compute
the relevant statistics, and publish them to the ledger. But this
must be done in a privacy-preserving manner, without any
of the individual hospitals being able to see in the clear the
private data held by other hospitals.

DETECTING INSURANCE FRAUD. For another example, imag-
ine an insurance market in which insurers want to pool
their data together to detect fraud. For example they may
want to discover instance where the same person is buying
policies with many insurers over a short period of time, or
submit multiple claims to different insurers for the same
incident. Here too we could consider keeping policy and claim
information on a joint ledger in a privacy-preserving format,

and periodically running a fraud-detection smart contract to
look for fraud patterns. As in the previous example, the smart
contract should have logical access to all the data in order
to look for suspicious patterns, but it should be implemented
without revealing private data of one insurance company to
any of its competitors.

BIDDING FOR SHIPPING SLOTS. In a setting with multiple
ships and multiple delivery companies, we may want to auc-
tion off “container slots” on the various ships to the delivery
companies. Imagine creating a unified ledger where each ship
can record its schedule and rates, and each delivery company
can record its needs and how much it is willing to pay. We
then could have a smart contract that would logically treat all
this information as a big multi-unit auction, and applying some
resolution strategy to assign containers to ships and generate
the appropriate invoices to the delivery companies. Using the
consistency and immutability of the ledger, this yields a price
resolution mechanism that carries with it enforcement and
audit. Of course the various rates and payment options are
very sensitive, so they need to be stored in a manner that will
not compromise their secrecy. For the same reason, the smart
contract must be implemented in a way that will not divulge
the secrets of one company to another.

B. Previous Work on Blockchain with Private Data

Putting private data on the ledger comes with an inherent
dilemma: If everyone sees the same ledger, how can we have
private data that some can see but others cannot? A common
solution in many systems is to put on the ledger only an
encryption (or a hash) of the private data, while keeping the
data itself under the control of the party that owns it. Of course,
this solution on its own is not enough if the smart contracts
depend in any way on the private data (as in the use-cases
above). Several existing systems offer partial solutions:

HYPERLEDGER FABRIC CHANNELS. Hyperledger Fabric im-
plements channels, which are essentially separate ledgers. The
data on a channel is only visible to the members of that
channels, but not to other peers in the system. This solution
provides some measure of privacy (from non-member peers),
but it still requires that all members of a channel trust each
other with all the data on this channel.

USING ZERO-KNOWLEDGE PROOFS. Zero-Knowledge proofs
(ZKP) [3] allow a prover to convince others that a certain
statement is true, without revealing any additional information.
Using ZKPs is enough when the smart contract depends on the
private data of a single participant: The party who knows the
secret can run the smart contract on its own, and then prove to
everyone else that it did so correctly. For example, in a setting
where participants have accounts with secret balance on the
ledger, a participant wishing to buy a $100-item can use ZKP
to prove that its balance is greater than $100. One examples
of this approach is the Zcash currency [11], that supports a
very general form of ZKPs.

However, ZKPs are not sufficient in settings where the smart
contract depends on the secret information of more than one

participant. For example, if we have one user with secret
balance and another with secret reserve price for an item,
ZKPs on their own are not enough for checking if the balance
of the first user is bigger than the reserve price of the second.
(Indeed ZKPs are not sufficient for any of the use cases that
we sketched before.)

BLOCKSTREAM CONFIDENTIAL ASSETS (CA). Blockstream
CA [9] use simple ZKPs in conjunction with additive ho-
momorphic commitments to manipulate secret data on the
ledger. For example, two users whose secret account balances
are encrypted with additively homomorphic commitments, can
agree privately (off chain) on a price of an item. The first
user can then subtract this amount from her balance and add
it to the balance of the other user (using homomorphism),
and prove to everyone (using ZKP) that the amount added to
the second balance is equal to the amount subtracted from
the first. But note that the transaction amount itself must
be fully known to the first party, this combination of ZKP
and additively homomorphic commitments is still not strong
enough to compare two secret values, or for any of the use-
cases from above.

SOLIDUS. Solidus [1] is a system for confidential transac-
tions on public blockchains, aiming to hide not only the
details of the different transactions but also the participants in
those transactions. Designed for banking environments, it uses
publicly-verifiable Oblivious-RAM (which combines ZKPs
with Oblivious-RAM) to hide the identities of the individual
bank customers. Similar to other ZKP-based solutions, Solidus
is designed for settings where each transaction depends only
on secrets of one participant (i.e., one of the banks).

HAWK. Hawk [5] is an architecture for a blockchain that can
support private data. It uses a trusted component (called a man-
ager) to handle that secret data, which is realized using trusted
hardware (such as Intel SGX). The Hawk paper remarks that
secure-MPC protocols can also be used to implement the
manager, but chose not to explore that option in their context
(with very many parties).

ENIGMA. The Enigma system [12], [13] uses secure-MPC pro-
tocols to implement support for private data on a blockchain
architecture. The main difference between our solution and
Enigma is that we integrate secure-MPC protocols within the
blockchain architecture itself, while Enigma uses off-chain
computation for that purpose. We discuss the pros and cons
of these approaches in Section I-C1 below, here we just note
that on-chain computation seems like a better match for a
permissioned blockchain such as Hyperledger Fabric.

C. Our Work

In this work we investigated using secure-MPC protocols
for supporting private data on Hyperledger Fabric, integrating
the execution of the secure-MPC protocol as part of the smart
contract.

Cryptographic secure-MPC techniques, developed since the
80’s [2], [10], allow mutually suspicious parties to compute
a joint function on their secret inputs, arriving at the right

outcome without having to reveal the inputs to each other.
A good way of thinking about such protocols is that they
mimic the security guarantees that we could get by having a
trusted party do the computation on behalf of the participants.
But of course this trusted party is merely virtual, replaced
by cryptographic messages that are sent between the actual
parties in the protocol. The last decade saw many advances
in practical protocols for cryptographic secure computation,
and this technology is now efficient enough to handle many
real-life workloads.

In our solution, the parties store their private data on the
ledger, encrypted with their own secret key. When private
data is needed in a smart contract, the party who has the key
decrypts it and uses the decrypted value as its local input to
the secure-MPC protocol. This allows the smart contract to
depend on any combination of public and private data from
the ledger.

1) On-chain Secure-MPC: Differently than systems such
as Enigma [13], our approach integrates secure-MPC proto-
cols into the blockchain architecture itself rather than having
separate nodes that run it off-chain. Our approach seems to
be a better match for a permissioned blockchain such as
Hyperledger Fabric, where the peers are typically associated
with “semantically meaningful” entities that have a stake in
the data on the ledger. Indeed, the underlying trust model in
a permissioned blockchain is essentially the same as the one
used in secure-MPC protocols, i.e., mutually-suspicious parties
that communicate to accomplish a common goal. For example,
in the medical data use-case from above, it is likely that each
peer in the system will belong to some hospital, and hence
will have some data that it can see but the other peers cannot.
Having the same peers that write to the ledger also execute
the secure-MPC protocol allow us to align the trust models,
resulting in a more manageable (and more secure) system.

Moreover, running the secure-MPC protocol on-chain allow
us to use the blockchain facilities in the protocol itself. For
example we can use the blockchain facilities for identity
management and communication (or even use an existing im-
plementation of a consensus protocol to implement a broadcast
channel that may be needed in the protocol). Delegating the
secure-MPC protocol to an off-chain component would mean
re-implementing these facilities for that new component.

The main argument against using on-chain secure-MPC
protocols is that the inefficiencies of the protocol and the
blockchain may compound each other, but this argument
applies more to permissionless blockchain (that are typi-
cally slower than permissioned ones). In our (limited) ex-
periments with a simple secure-MPC protocols, the cost of
the secure-MPC protocol was quite small (and an optimized
version can be made even much faster). See some details in
Section III-C.

2) Our Demo: To help drive our investigation, we imple-
mented a demo of a simple bidding scenario, in which reserve
prices and bids are secret (and all other auction details are
public). The smart contract implements a 1st-price seal-bid
auction mechanism, where the participants learn nothing but

the result (and in particular do not learn the losing bids nor
the reserve price of the seller).

In the rest of this note we give more details about our
architecture and implementation. In Section II we describe the
system architecture and how it is integrated it into Hyperledger
Fabric (v1.0), and discuss the changes that are needed to get a
production system. In Section III we give more details of the
demo itself, including the secure-MPC protocol that we used
and the user-interface aspects.

3) Acknowledgments: We thank Angelo De Caro and Yacov
Manevich for all their help with integrating our solution into
Fabric.

II. ON-CHAIN SECURE-MPC IN HYPERLEDGER FABRIC

A. Basic Concepts of Hyperledger Fabric

In Hyperledger Fabric, the nodes that have access to the
ledger are called peers, and each peer belongs to some
organization. Adding transactions to Fabric is a two-phase
process: A client requesting a transaction first approaches one
or more peers with a transaction proposal, and asks them to
execute and endorse the proposal. The endorsing peers then
execute a smart contract — called a chaincode in Fabric— to
determine whether or not to endorse the transaction, and if
so then how this transaction changes the state on the ledger.
A relevant detail for our purposes is that all endorsers must
see an identical transaction proposal (else it is rejected in
the next phase). Since the “logical validity” of transactions
is determined in the endorsement phase, we chose to run the
secure-MPC protocols during that phase.

Once sufficiently many endorsements are obtained, the
client sends the endorsed transaction to an ordering service,
that imposes a linear order on the transactions and then
actually adds them to the ledger. The number of required
endorsements for a transaction is determined by an endorse-
ment policy, which is set when the ledger is initialized. Some
example policies are “at least one endorser,” “at least two
from among the five organizations,” etc. Roughly speaking,
the ledger has only a single endorsement policy that applies
to all the transactions in it.

B. Two Crucial Additional Components

To support transactions that depend on private data, we
needed to add two components to Fabric:

LOCAL CONFIGURATION. To deal with data that is only visible
to some peers but not others, the chaincode implementing the
endorsement logic at the different peers should have access
to local parameters that are not available to other peers. For
example, the peers often need access to the secret key of their
organization.

INTER-PEER COMMUNICATION. Another component that we
need is communication between peers during endorsement.
Namely, the chaincode running at one peer must communicate
with the same chaincode running at other peers, so that
information about private data could impact the endorsement
decision of peers who do not see that data.

In our demo, we implemented these components using a
“helper server” that we developed in Go. The helper server
stores the local parameters of each peer and facilitates setting
up communication channels between instances of the chain-
code at different peers. The chaincode running inside a peer
communicates with the helper server, whose address we hard-
coded in the chaincode itself. Communication between the
chaincode instances and the helper server is done via gRPC, a
remote procedure call framework which is used extensively in
Fabric. Since the chaincode in Fabric does not even know the
peer ID on which it is running, it just sends to the helper server
its Docker container ID (from /proc/1/cpuset), and the
helper server uses the Docker executable to convert it into a
container name and extracts the peer name from it.

We note that the helper server is an insecure hack for
implementing the above two components, we implemented it
as a trusted party with access to all the secrets. This quick-
and-dirty hack lets us study the feasibility of our approach
without having to change the Fabric architecture itself, and it
demonstrates that secure-MPC protocols can be used on-chain
in Fabric with just the above two simple new components.
Building on our demo experience, we currently are working
on integrating these two components into Fabric in a secure
way. It seems that we can utilize new features of Fabric 1.1 to
ease this integration.

C. Fabric-Specific Implementation Details

ENCRYPTED DATA ON THE LEDGER. As explained earlier, we
keep private data on the ledger in encrypted form, under keys
that are only available to the peers that are supposed to see
it. We thus need to deal with the question of how to put such
encrypted data on the ledger in the first place. Recall that the
only way to put data on the ledger is for a client to send a
transaction proposal to some peers, and all these peers must
see an identical proposal. If the endorsement policy requires
peers from different organizations (cf. Section II-D), then the
only way to keep data hidden from some peers is for the client
to encrypt the data before including it in the proposal. Hence
this solution requires that (some) clients have access to the
encryption keys.

In our demo we used per-organization “privileged clients”
that have access to the symmetric keys that these organizations
use to encrypt their private data, the same keys that the
peers of those organization use to decrypt values during the
endorsement phase. Another option would be to use public-
key encryption, where clients use the public encryption keys of
the relevant organizations to encrypt the private data, and the
endorsing peers use the corresponding secret decryption keys
to recover the private data for use in the secure-MPC protocol.
Either way, deploying this type of solution in a production
system would require proper key-management, to ensure that
only authorized components get access to cryptographic keys.

SOFTWARE COMPONENTS. While the chaincode in Fabric
is usually written in Go, most cryptographic libraries for
secure-MPC protocols (including EMP-toolkit, the library we

are using) are written in C++. To call EMP-toolkit from the Go
chaincode, we use SWIG, which allows calling C++ code from
other languages.

To add support for SWIG and EMP-toolkit, we patched the
Fabric SDK for Node.js and added SWIG files (*.cpp, *.hpp,
*.swigcxx) to the chaincode package to be installed. We
also use a customized build environment (i.e., a customized
Docker container fabric-ccenv, specified by the environ-
ment variable CORE_CHAINCODE_BUILDER), that includes
SWIG and EMP-toolkit.

EMP-toolkit normally uses its own communication chan-
nels using UNIX sockets, but to use it within Fabric we
implemented new channels for EMP-toolkit on top of gRPC
(currently using the helper server). Our channels are created
in the chaincode in Go and passed to EMP-toolkit using SWIG.
THE ENDORSING PEERS. In the Fabric architecture, it is the
client’s responsibility to choose the endorsing peers for its
transactions, and our application is no exception. In our case,
it is important that the client chooses peers that can collectively
decrypt all the private fields that the transaction depends on.
Also, the client in our case must tell the peers about each
other, since each peer must know the identities of the other
peers in order to can run a secure-MPC protocol with them.

D. Security Considerations
Below we discuss several security-related aspects that we

did not address in our demo implementation, but that must be
addressed in any production system.
ENDORSEMENT POLICIES. It may be important to align the
trust model of the secure-MPC protocol with that of the
endorsement policy in the ledger. For example if the trust
model of the protocol assumes at most t adversarial parties, we
may want to set a policy that requires more than t endorsers,
ensuring that an invalid transaction will never be endorsed
within the trust model. (The alignment of trust models is less
important in settings where we can assume that parties are
honest-but-curious, since an honest-but-curious party will not
endorse an invalid transaction.)

For another example, we may want to set the endorsement
policy to ensure that the secret values of an organization cannot
be modified without endorsement of that organization. How-
ever, the policy language used in (the CLI interface of) Fabric
cannot specify such a constraint. Within the supported policy
language, it seems that the only “safe setting” is to require
that every transaction be endorsed by all organizations, which
may make the endorsement process very slow. Perhaps a good
compromise is to require endorsement from (say) at least three
organizations. A similar issue is that we (roughly) have to use
a single endorsement policy for all the transactions, whereas
in many cases we may want to impose different constraints on
different actions. For example, in our demo scenario it seems
natural to let organizations endorse their new-item transactions
on their own, but require that auctions are endorsed by all the
participants. We speculate that such non-standard endorsement
policies can be implemented in Fabric using a custom “system
chaincode”, but did not investigate this option.

CLIENT AUTHORIZATION. A production system must im-
plement appropriate authorization policies for clients. For
example, in our demo setting we may want to designate some
per-organization privileged clients that can list new items and
trigger auctions for existing items of that organization. Non-
privileged clients may still issue queries for the state of the
ledger, such as the description of all the items for sale.
ENFORCEMENT. Recall that Fabric transactions are added via a
two-phase process, and that the secure-MPC protocol is run in
the first phase to let peers decide whether or not to endorse the
transaction. This setting, however, allows a rouge peer to first
learn the result of the secure-MPC protocol, and then withhold
its endorsement if it does not like this result. This is an issue
of fairness, which is well studied in the literature. One way
of addressing it include using a threshold endorsement policy
(so no single peer can block the transaction). We can also
implement a commit transaction in which the result is kept
secret, followed by a reveal transaction where it is revealed.
VERIFIABILITY AND AUDIT. Including secret data in the
endorsement process makes it harder to verify proper endorse-
ment ex post facto. One way to address this concern is by
recording on the ledger non-interactive zero-knowledge proofs
of proper endorsement (together with the transaction itself). A
cheaper alternative is to allow verification only by privileged
auditors, by recording with the transaction also the protocol
transcript (or its hash), and have peers keep their private data
and randomness to show to the auditor.

III. DEMO

Fig. 1: High-level demo architecture. End-users access the web
servers of the different entities. These web-servers play the
role of the Fabric clients, talking to Fabric back-end, which is
assisted by our helper server.

Our demo implements a simple 1st-price auction scenario
with secret reserve prices and bids. It includes three or-
ganizations, called AUCIONITE LTD., BUYBUY CORP., and
PURRCHASE INC., each with a single peer in the system. Each
organization can list items with secret reserve prices, and can
place sealed bids for items listed by the others. All the infor-
mation about the items is recorded on the ledger, including a

unique-ID for the listing, a description, an (optional) picture,
a category, a cleartext minimum bid amount, an encrypted
reserve price (under the key of the listing organization),
and the time/date for the auction. Similarly each bid record
includes the ID of the item, the identity of the bidder, and an
encrypted bid amount.

When an auction transaction is invoked (by clicking a button
in the user interface), all three peers are activated to endorse
it, and each peer uses its organization key to decrypt its own
secrets off of the ledger. (Namely, for the seller, the reserve
price; and for each potential buyer, the amount of the bid.)
They then run a secure-MPC protocol to determine the highest
bid and whether or not it meets the reserve price, and the
auction result is published to the ledger. Once the auction
took place all the bid records for that auction are marked as
“invalid,” and if the auction succeeded then the item is marked
as “sold,” with a new owner and with the sell price. (If the
reserve was not met then the item ownership does not change,
and the peers are made aware of the failure.)

A. Demo Implementation

As illustrated in Fig. 1, the demo has three layers: a Fabric
back-end (with our helper server), organization web servers
(that play the Fabric clients), and the browser-based end-user
interface.

Most details of the Fabric layer were described in
Section II, for the demo we used three organizations
with one peer each (and IDs org〈n〉.example.com and
peer〈n〉.org〈n〉.example.com, respectively, 〈n〉 ∈ {0, 1, 2}).
We used a single orderer, and the helper server that we used
to implement local state and communication channels (cf.
Section II-B).

The end-user interface is browser-based, implemented with
the bootstrap framework using HTML 5, CSS, and Javascript.
We describe more aspects of it in Section III-B below.

In between, we have a layer of web servers, one per orga-
nization. On one hand these servers serve the browser-based
interface to the end users, and on the other hand they play
the role of the Fabric clients, interacting with the peers. This
layer was developed with Hyperledger Fabric SDK for Node.js,
and uses the hapijs framework and Handlebars.js templates. To
simplify coding, in our demo we implemented a single web
server that serves the website of all three organizations (but of
course a production system would have different web servers
for the different organizations).

B. User Interface

In our demo we have identical user interface for the three
organizations. The UI lets the end-users create new items, list
all the available items, bid on an item belonging to another
organization, list all bids for an item, and run auction for an
item. Some screen shots are illustrated in Figures 2 though 4.
The normal flow of an auction is as follows:

1) A seller connects to the website of its organization and
creates a new item record, specifying things such as
category, description, start price, and reserve price. The

reserve price is confidential and is only sent encrypted
to the chaincode, and no other party has access to it.

2) Interested buyers connect to the website of their organi-
zation, see the list of items and place bids on them. The
bid price is also confidential and sent encrypted to the
chaincode.

3) The owner of an item connects to the website to trigger
the auction. The web server then contacts one peer from
each organization and they all endorse that transaction,
running the secure-MPC protocol to get the result of the
auction. The buyer that offered the highest bid will be
the winner, as long as this bid is above the reserve price.
Otherwise, an appropriate error is returned. The result
of the auction is finally committed to the ledger.

C. The secure-MPC Protocol
Our demo only handles upto three parties, namely a seller

and upto two buyers. In the description below we refer to
these parties as Sally the seller, and the bidders Boyd and
Debra. We designed a simple three-party protocol for these
three parties, building on the implementation of two-party
semi-honest protocols in the EMP-toolkit library. Our protocol
is secure in the semi-honest model, assuming honest majority
(i.e., at most one adversarial party).

a) Input & output.: Sally’s input is the reserve price s
for the item, and the inputs of the two bidders are b (Boyd)
and d (Debra). These numbers are all 32-bit integers.

At the end of the protocol, all parties should receive the
output ’trit’ whose value is either 0 if the reserve price was not
met (or the computation aborted), 1 if Boyd won the auction,
or 2 if Debra won the auction. (If Boyd and Debra submit the
same bid, we arbitrarily let Boyd win the auction.) Namely,
the function that they compute is:

f(s, b, d) =

(0, 0) s > max(b, d) // Reserve not met
(1, b) b ≥ max(s, d) // Boyd won
(2, d) d ≥ s, d > b // Debra won

The protocol consists of three main steps:
1) First the two bidders compare their bids using Yao’s

protocol for the Millionaires problem, where the output
is secret-shared among them. Namely at the conclusion
of this protocol they get two output bits xb (Boyd) and
xd (Debra) that are individually uniform and satisfy
xb ⊕ xd = {0 if b < d, or 1 if b ≥ d}.

2) Next the bidders runs two instances of 1-out-of-2 string
Oblivious Transfer (OT), to get an XOR-sharing of the
value max(b, d):
In the first instance Debra plays the OT-receiver, us-
ing xd as her choice bit. Boyd chooses a random 32-bit
string rb, then he plays the OT-sender, using r and r⊕ b
as his two strings, ordered according to xb. Namely if
xb = 0 then Boyd uses the pair (rb, rb⊕b), and otherwise
he uses (rb ⊕ b, rb). Boyd’s output share is rb, and
Debra’s share is the received string (which we denote
rd). It is easy to check that rb ⊕ rd = {0 if xb ⊕ xd =
0, or b if xb ⊕ xd = 1}.

The second instance is symmetric, resulting in the two
bidders having output strings r′b, r

′
d satisfying the condi-

tion rb⊕ rd = {d if xb⊕ xd = 0, or 0 if xb⊕ xd = 1}.
The two bidders XOR their shares from the two in-
stances, thus obtaining yb = rb ⊕ r′b and yd = rd ⊕ r′d,
and indeed yb ⊕ yd = max(b, d).

3) Next, Boyd sends its shares xb and yb to Sally over a
private channel. Then Sally and Debra engage in another
Yao protocol, computing whether the reserve price was
met, i.e., the indicator bit for (yb ⊕ yd) ≥ s. If the
reserve was met then Debra sends xd, yd to Sally and
Boyd, who can recover the winning bid yb⊕ yd and the
winner xb⊕xd (and then they send them back to Debra).

PERFORMANCE. We ran our demo on a Lenovo Carbon X1
machine (4th generation), with Intel Core i5-6300U CPU and
8GB or RAM, running Ubuntu 16.04, where the peers and
servers were all running on separate docker container on the
same machine. The time of the execution (and endorsement)
of a transaction proposal involving the secure-MPC protocol
was about 0.3s, which is faster than what it took to commit a
single block to the ledger. We speculate than most of this time
is due to buffering effects in our communication infrastructure,
but did not explore this further. There is no doubt that this
execution can be made even much faster, in particular by
improving the communication channels.

IV. CONCLUSIONS

In this work we investigated supporting private data on
Hyperledger Fabric using on-chain secure-MPC protocols. We
designed an architecture that supports such private data and
implemented a demo auction application that uses it. Our
investigation identified two components that should be added
to Fabric to enable execution of smart contracts that depend
on such private data, and are currently working on integrating
these components into Fabric.

REFERENCES

[1] E. Cecchetti, F. Zhang, Y. Ji, A. E. Kosba, A. Juels, and E. Shi. Solidus:
Confidential distributed ledger transactions via PVORM. In B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 701–717. ACM, 2017.

[2] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing
but their validity or all languages in NP have zero-knowledge proof
systems. Journal of the ACM, 38(3):691–729, 1991.

[3] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18(1):186–208,
1989.

[4] Welcome to Hyperledger Fabric. https://hyperledger-fabric.readthedocs.
io/, accessed Jan 2018.

[5] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In 2016 IEEE Symposium on Security and Privacy, pages
839–858. IEEE Computer Society Press, May 2016.

[6] L. Mearian. What is blockchain? the most disrup-
tive tech in decades. Computerworld, Dec 2017,
https://www.computerworld.com/article/3191077/security/
what-is-blockchain-the-most-disruptive-tech-in-decades.html, 2017.

[7] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf, 2008.

https://hyperledger-fabric.readthedocs.io/
https://hyperledger-fabric.readthedocs.io/
https://www.computerworld.com/article/3191077/security/what-is-blockchain-the-most-disruptive-tech-in-decades.html
https://www.computerworld.com/article/3191077/security/what-is-blockchain-the-most-disruptive-tech-in-decades.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

[8] G. Rapier. From Yelp reviews to mango shipments:
IBM’s CEO on how blockchain will change the world.
Business Insider, June 2017, https://www.businessinsider.com/
ibm-ceo-ginni-rometty-blockchain-transactions-internet-communications-2017-6,
2017.

[9] A. van Wirdum. “confidential assets” brings privacy
to all blockchain assets: Blockstream. Bitcoin Mag-
azine, April 2017, https://bitcoinmagazine.com/articles/
confidential-assets-brings-privacy-all-blockchain-assets-blockstream/.

[10] A. C.-C. Yao. Protocols for secure computations (extended abstract). In
23rd FOCS, pages 160–164. IEEE Computer Society Press, Nov. 1982.

[11] Zcash - all coins are created equal. https://z.cash/. Accessed Dec 2017.
[12] G. Zyskind, O. Nathan, and A. Pentland. Decentralizing privacy: Using

blockchain to protect personal data. In IEEE Symposium on Security
and Privacy Workshops, pages 180–184. IEEE Computer Society, 2015.

[13] G. Zyskind, O. Nathan, and A. Pentland. Enigma: Decentralized
computation platform with guaranteed privacy. CoRR, abs/1506.03471,
2015.

https://www.businessinsider.com/ibm-ceo-ginni-rometty-blockchain-transactions-internet-communications-2017-6
https://www.businessinsider.com/ibm-ceo-ginni-rometty-blockchain-transactions-internet-communications-2017-6
https://bitcoinmagazine.com/articles/confidential-assets-brings-privacy-all-blockchain-assets-blockstream/
https://bitcoinmagazine.com/articles/confidential-assets-brings-privacy-all-blockchain-assets-blockstream/
https://z.cash/

Fig. 2: The default page on each organization’s website has a
list of all of its items.

Fig. 3: Clicking the ‘Bid’ link at the top, opens a page that
lists all the items for sale by other organizations.

Fig. 4: Clicking ‘show bids’ for an item pops up a box with
all the bids for that item. The bid amounts are confidential
and are only shown for the party that made them.

	I Introduction
	I-A Blockchain with Private Data
	I-B Previous Work on Blockchain with Private Data
	I-C Our Work
	I-C1 On-chain Secure-MPC
	I-C2 Our Demo
	I-C3 Acknowledgments

	II On-Chain Secure-MPC in Hyperledger Fabric
	II-A Basic Concepts of Hyperledger Fabric
	II-B Two Crucial Additional Components
	II-C Fabric-Specific Implementation Details
	II-D Security Considerations

	III Demo
	III-A Demo Implementation
	III-B User Interface
	III-C The secure-MPC Protocol

	IV Conclusions
	References
	References

