
Compressible FHE with

Applications to PIR
Craig Gentry, Shai Halevi

Algorand Foundation Research

*Work done while at IBM Research

Information Rate of Homomorphic Encryption

Contemporary (F)HE is a bandwidth hog

Ciphertext is larger than plaintext by at least a large

constant factor (sometimes more)

This is NOT the case for standard encryption

Can do |ctxt|~|ptxt|

Can we hope to get similar efficiency with (F)HE?

Information Rate of Homomorphic Encryption

The only rate-efficient HE is Damgård–Jurik

𝑝𝑡𝑥𝑡 ∈ 𝑍𝑁𝑟 , 𝑐𝑡𝑥𝑡 ∈ 𝑍𝑁𝑟+1, for any desirable 𝑟

Can grow r to get rate 1-ε for any ε>0

But

only additive-homomorphic

rather slow (especially in the context of applications)

not quantum safe

What about lattice-based HE schemes?

Yorktown Heights, 2017UCSB, 2016Berkley, 2015

History of This Work

Toronto, 2018

What’s the rate of lattice-

based HE schemes?

Eh… ½, maybe more?

History of This Work

Back in Yorktown Heights, 2018

That’s embarrassing, we

really should work on this

Okay

This Work

A “compressible” LWE-based (F)HE

Rate 1-ε, security under LWE with gap 𝜆𝑂(Τ1 𝜖)

Application to single-server PIR

First “practical” scheme for large databases

Rate 4/9, should be 10-20 cycles per byte in db

Faster than whole-database AES encryption

Compare to state of the art (SealPIR, [ACLS18]), with rate

1/1000 and >100 cycles/byte

Meanwhile, elsewhere…

I’d better ask someone else

Independent Work

Döttling, Garg, Ishai, Malavolta, Mour, Ostrovsky.
Trapdoor hash functions and their applications. CYRPTO 2019.

Limited homomorphism, choice of assumptions

Brakerski, Döttling, Garg, Malavolta. Leveraging linear

decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles.

2019.

FHE, based on LWE

More general than ours, less practically efficient

What is Compressible (F)HE?

An (F)HE Scheme (KeyGen, Enc, Dec, Eval)

Encrypted output  Eval(circuit, encrypted Input)

But Dec is broken into:

Compression: c*  Compress(c1,c2,…)

Compressed decryption: m1,m2,… cDec(c*)

Rate : For any circuit P with long enough output

|Compress(Eval(P, Enc(input)))|<| P output|/

Background: [PVW08] Packing

Recall Regev encryption

A (𝜆 + 1) (pseudorandom) vector encrypts one scalar

 (𝒔𝒌| − 𝟏), 𝒄𝒕 = 𝒆𝒏𝒄𝒐𝒅𝒆 𝒎 + 𝒆 𝒎𝒐𝒅 𝒒 , 𝒆 ≪ 𝒒

[PVW08]: Regev-like with rate 1-ε

A (𝜆 + 𝑟) (pseudorandom) vector encrypts 𝑟 scalars

Can grow r to get rate 1-ε for any ε>0

[𝑺| − 𝑰] ⋅ 𝒄𝒕 = 𝒆𝒏𝒄𝒐𝒅𝒆 𝒎 + 𝒆 𝒎𝒐𝒅 𝒒 , |𝒆| ≪ 𝒒

Each row of this equation is a Regev encryption

Background: “Gadget Matrices” [MP12]

A rectangular matrix 𝐺 ∈ 𝑍𝑞
𝑛×𝑚

A known “public trapdoor” 𝐺−1 0 ∈ 𝑍𝑞
𝑚×𝑚:

a. Entries of 𝐺−1 0 are small, |𝐺−1 0 |∞ ≪ 𝑞

b. 𝐺−1 0 has full rank over the reals

c. 𝐺 × 𝐺−1 0 = 0 (𝑚𝑜𝑑 𝑞)

For 𝐶 ∈ 𝑍𝑞
𝑛×𝑚, 𝐺−1(𝐶) is a redundant version of C

An 𝑚 ×𝑚 matrix satisfying a,b, and G × 𝐺−1 𝐶 = 𝐶

Can be found efficiently from 𝐶

The more rectangular G, the smaller 𝐺−1 ⋅ can get

Gn

m

Background: “Gadget Matrices” [MP12]

Example, bit-decomposition: ℓ = log 𝑞 , 𝑚 = 𝑛 ⋅ ℓ

G =

1 2…2ℓ−1

1 2…2ℓ−1

⋱
1 2…2ℓ−1

𝐺−1 0 =

2
−1 2

−1
⋱ 2

−1
b

its-o
f-q
…

b
its-o

f-q

Background: [GSW13] HE Scheme

Ptxt: scalars (e.g., bits), Ctxt: 𝑛 × 𝑚 matrices

𝐶 ∈ 𝑍𝑞
𝑛×𝑚 encrypts 𝜎 ∈ 𝑍𝑞 wrt 𝑠𝑘 if

𝒔𝒌 ⋅ 𝑪 = 𝝈 ⋅ 𝒔𝒌 ⋅ 𝑮 + 𝒆 𝒎𝒐𝒅 𝒒 |𝒆| ≪ 𝒒

𝐶1 + 𝐶2 encrypts 𝜎1 + 𝜎2

𝐶1 ⋅ 𝐺
−1 𝐶2 encrypts 𝜎1𝜎2

Multiplication noise term is 𝜎1 ⋅ Ԧ𝑒2 + Ԧ𝑒1 ⋅ 𝐺
−1 𝐶2

The scalars 𝜎 should be small

Our Construction

The Two Parts of Our Compressible HE

Low-rate scheme for homomorphism

A slight variant of GSW

High-rate scheme for compression

Somewhat similar to the matrix HE scheme of [HAO16]

Ptxt, ctxt are matrices of similar dimensions

We describe two variants of that scheme

The two parts “play nice” together

They share the same secret key

Can pack many GSW ctxts in one high-rate ctxt

The Low-Rate Scheme

Like GSW, but sk is a matrix, 𝑆 = [𝑆′| − 𝐼]

As in [PVW08]

If 𝐶 ∈ 𝑍𝑞
𝑛×𝑚 encrypts 𝜎 ∈ 𝑍𝑞 then

𝑺 ⋅ 𝑪 = 𝝈 ⋅ 𝑺 ⋅ 𝑮 + 𝑬 𝒎𝒐𝒅 𝒒 |𝑬| ≪ 𝒒

Each row is a GSW invariant, all with the same 𝜎

Homomorphic operations work exactly as in GSW

𝐶1 + 𝐶2 encrypts 𝜎1 + 𝜎2, 𝐶1 ⋅ 𝐺
−1 𝐶2 encrypts 𝜎1𝜎2

Multiplication noise term is 𝜎1 ⋅ 𝐸2 + 𝐸1 ⋅ 𝐺
−1 𝐶2

The High-Rate Scheme

Ctxt 𝐶 encrypts ptxt 𝑀 wrt 𝑆 if

𝑺 ⋅ 𝑪 = 𝐞𝐧𝐜𝐨𝐝𝐞 𝑴 + 𝑬 𝒎𝒐𝒅 𝒒 |𝐄| ≪ 𝒒

Encoding is needed to remove noise E on decryption

Two variants, differ in how they encode M

One uses a “nearly square” new gadget matrix

Ptxt, ctxt are both matrices modulo q

Another variant uses scaling instead

Ptxt are matrices modulo some 𝑝 < 𝑞

A Nearly-Square Gadget Matrix

To get high rate, we want to add “just a little
redundancy”, enough to remove a little noise

Want “only a little rectangular” gadget matrix 𝐻

Consider what we need from 𝐹 = 𝐻−1(0):

It needs to be at least somewhat small

It should have full rank over the reals

But also H × 𝐹 = 0 (𝑚𝑜𝑑 𝑞)

So 𝐹 only has a very small rank modulo 𝑞

Recall that 𝐻 is nearly-square

A Nearly-Square Gadget Matrix

Example when 𝑞 = 𝑝𝑡 − 1 for some integers 𝑝, 𝑡

Let 𝐹 =

1 𝑝 𝑝2 𝑝𝑡−1

𝑝𝑡−1 1 𝑝 𝑝𝑡−2

𝑝𝑡−2 𝑝𝑡−1 1 𝑝𝑡−3

⋱
𝑝 𝑝2 𝑝3 1

|F| is small enough to remove noise of size upto
𝑝−1

2

𝐹 has full rank over the reals, only rank one mod 𝑞

𝐻 ∈ 𝑍𝑞
𝑡−1 ×𝑡

is any basis of the null space of 𝐹 mod 𝑞

Can use 𝐻𝑟 = 𝐻⊗ 𝐼𝑟 (for any r), with 𝐹𝑟 = 𝐻𝑟
−1 0 = 𝐹 ⊗ 𝐼𝑟

Can relax 𝑞 = 𝑝𝑡 − 1 to

𝑞 = 𝑝𝑡 − 𝛼 for small 𝛼

The High-Rate Scheme (1st Variant)

Ctxt 𝐶 ∈ 𝑍𝑞
𝑛1×𝑛2 encrypts ptxt 𝑀 ∈ 𝑍𝑞

𝑛0×𝑛0 wrt 𝑆 if

𝑺 ⋅ 𝑪 = 𝑴 ⋅ 𝑯 + 𝑬 𝒎𝒐𝒅 𝒒 |𝐄| ≪ 𝒒

E is small enough so 𝐻 can be used to remove it

Note the dimensions of the various matrices

Rate is 𝑛0
2/𝑛1𝑛2

𝑆′ −𝐼 𝐻

𝑛0 𝑛0

𝑛0

𝑛2

𝒏𝟏 = 𝒏𝟎 + 𝝀

𝜆

𝑪𝑛1
𝑴𝑛0

𝒏𝟐

𝐸𝑛0

𝑛2

𝑛0⋅ ⋅ +=

The High-Rate Scheme (1st Variant)

Ctxt 𝐶 ∈ 𝑍𝑞
𝑛1×𝑛2 encrypts ptxt 𝑀 ∈ 𝑍𝑞

𝑛0×𝑛0 wrt 𝑆 if

𝑺 ⋅ 𝑪 = 𝑴 ⋅ 𝑯 + 𝑬 𝒎𝒐𝒅 𝒒 |𝐄| ≪ 𝒒

E is small enough so 𝐻 can be used to remove it

Compressed Decryption:

𝑋 ≔ 𝑆 ⋅ 𝐶 = 𝑀 ⋅ 𝐻 + 𝐸 (𝑚𝑜𝑑 𝑞)

𝑌 ≔ 𝑋 ⋅ 𝐹 = 𝐸 ⋅ 𝐹 (𝑚𝑜𝑑 𝑞)

Since 𝐻 ⋅ 𝐹 = 0 (𝑚𝑜𝑑 𝑞)

If |𝐸 ⋅ 𝐹| < 𝑞/2 then 𝑌 = 𝐸 ⋅ 𝐹 over the integers

Can multiply by 𝐹−1 to recover 𝐸, then remove it

Compression

Consider many GSW bit encryptions
𝑺 ⋅ 𝑪𝒖,𝒗,𝒘 = 𝝈𝒖,𝒗,𝒘 ⋅ 𝑺 ⋅ 𝑮 + 𝑬𝒖,𝒗,𝒘

𝑢, 𝑣 ≤ 𝑛0, 𝑤 ≤ ℓ = log 𝑞

Enough bits 𝜎𝑢,𝑣,𝑤 for a plaintext matrix 𝑀 ∈ 𝑍𝑞
𝑛0×𝑛0

Let 𝑇𝑢,𝑣 be the 𝑛0 × 𝑛0 singleton matrix 𝑒𝑢 ⊗𝑒𝑣

1 only in entry 𝑢, 𝑣, 0 elsewhere

Also let 𝑇𝑢,𝑣
′ = ∈ 𝑍𝑞

𝑛1×𝑛0

−𝑇𝑢,𝑣

0

𝑛0

𝑛0

𝜆

Note 𝑆′ −𝐼 ⋅ 𝑇𝑢,𝑣
′ = 𝑇𝑢,𝑣

Compression

To pack all the GSW ciphertexts 𝐶𝑢,𝑣,𝑤 we set

𝑪∗ = ෍

𝒖,𝒗,𝒘

𝑪𝒖,𝒗,𝒘
𝒏𝟏×𝒎

⋅ 𝑮−𝟏 𝟐𝒘 ⋅ 𝑻𝒖,𝒗
′ ⋅ 𝑯

𝒎×𝒏𝟐

(𝒎𝒐𝒅 𝒒)

𝑆 ⋅ 𝐶∗ = σ𝑆 ⋅ 𝐶𝑢,𝑣,𝑤 ⋅ 𝐺−1 2𝑤 ⋅ 𝑇𝑢,𝑣
′ ⋅ 𝐻

= σ(𝜎𝑢,𝑣,𝑤 ⋅ 𝑆 ⋅ 𝐺 + 𝐸𝑢,𝑣,𝑤) ⋅ 𝐺
−1 2𝑤 ⋅ 𝑇𝑢,𝑣

′ ⋅ 𝐻

= σ2𝑤 ⋅ 𝜎𝑢,𝑣,𝑤 ⋅ 𝑆 ⋅ 𝑇𝑢,𝑣
′ ⋅ 𝐻 + 𝑛𝑜𝑖𝑠𝑒

= σ𝑢,𝑣 σ𝑤 2
𝑤 ⋅ 𝜎𝑢,𝑣,𝑤
𝑧𝑢,𝑣

⋅ 𝑇𝑢,𝑣 ⋅ 𝐻 + 𝑛𝑜𝑖𝑠𝑒

𝑀

The High-Rate Scheme (2nd Variant)

Ctxt 𝐶 ∈ 𝑍𝑞
𝑛1×𝑛0 encrypts ptxt 𝑀 ∈ 𝑍𝑝

𝑛0×𝑛0 wrt 𝑆 if

𝑺 ⋅ 𝑪 = ൗ
𝒒
𝒑 ⋅ 𝑴 + 𝑬 𝒎𝒐𝒅 𝒒 |𝐄| < ൗ

𝒒
𝟐𝒑

𝑝 < 𝑞, but close (say 𝑝 = 𝑞1−𝜖)

Use scaling to remove noise on decryption

Compression is similar to before

Except that 𝐺−1 2𝑤 ⋅ 𝑇𝑢,𝑣
′ ⋅ 𝐻 is replaced by

𝐺−1 2𝑤 ⋅ Τ𝑞 𝑝 ⋅ 𝑇𝑢,𝑣
′ .

Single Server PIR

Application to Single-Server PIR

Compressible HE easily yields high-rate PIR

But we also want practical efficiency

Our Approach to Single-Server PIR

Start from the basic scheme of [KO97]

Think of 𝑁-entry DB as an 𝑁1 × ൗ𝑁 𝑁1 matrix

Continue recursively on the ൗ𝑁 𝑁1-database

Almost all the work is in the 1st step

0 ×

0 ×
1 ×
0 ×

0 ×
+

𝑁1

A Few More Pieces of Magic

Multiplying a GSW ctxt by high-rate ctxt yields a high-

rate ciphertext of the product

Same for multiplying a GSW ctxt by plaintext M

The products 0 ×
1 ×

yield high-rate encryption of the database

High-rate scheme is additively homomorphic

All we need is to add across the 1st dimension

The same holds for the recursive levels

From Here to Practical Single-Server PIR

Many more tricks

Pre-processing the db to eliminate FFTs

Switching to RLWE

Different gadget matrices 𝐺 in different steps

Using modulus switching

…

The End-Result PIR

Rate is Τ2 3 2 = 4/9

𝑆 is a 2-by-3 matrix (over a ring)

𝐻 is a 2-by-3 matrix (over a ring)

Total work ~ 1.5 multiplies per database byte

Modulo single-precision numbers (upto 60 bits)

Should be 10-20 cycles per byte in software

3x3 2x2

𝑆 ⋅ 𝐶 = 𝑀 ⋅ 𝐻 + 𝐸

The End-Result PIR

First single-server PIR plausibly efficient enough to

handle large databases

Less work than whole database AES encryption

Which you would need (for communication security) if you

used the naïve solution

So we beat the naïve solution not only on bandwidth but

also on server computation

