/Algorand

FOUNDATION

Compressible FHE with
Applications to PIR

Craig Geniry, Shai Halevi
Algorand Foundation Research

*Work done while at IBM Researc

Information Rate of Homomorphic Encryption A

= Contemporary (F)HE is a bandwidth hog

= Ciphertext is larger than plaintext by at least a large
constant factor (sometimes more)

= This is NOT the case for standard encryption
»Can do |ctxt|~ | ptxt|

= Can we hope to get similar efficiency with (F)HE?

Y

Information Rate of Homomorphic Encryption

= The only rate-efficient HE is Damgdrd-Jurik
wptxt € Zyr, ctxt € Zyr+1, fOr any desirable r

= Can grow r to get rate 1-¢ for any £>0

= But
=0n
=raf
=NO

y addifive-homomorphic
ner slow (especially in the context of applications)

I quantum safe

= What about lattice-based HE schemes?¢

Y

History of This Work

What's the rate of lattice- Eh... 2, maybe more?
based HE schemes?

- o -
<

Ead
-
‘ -
- — =
= R %
- [l
!]
|l 1 Y
_'“ 3 111! 3 '=)
- : BB = i ;
i | e i il
\ n ;

History of This Work

That's embarrassing, we
really should work on this

V Back in Yorktown Heights, 218

This Work

= A “compressible” LWE-based (F)HE
=Rate 1-¢, security under LWE with gap 19/

= Application to single-server PIR

= First “practical” scheme for large databases
»Rate 4/9, should be 10-20 cycles per byte in db

= Faster than whole-database AES encryption

= Compare to state of the art (SealPIR, [ACLS18]), with rate
1/1000 and >100 cycles/byte

Y

Meanwhile, elsewhere...

I'd better ask someone else

Independent Work A

= Dottling, Garg, Ishai, Malavolta, Mour, Ostrovsky.
Trapdoor hash functions and their applications. CYRPTO 2019.

= | imited homomorphism, choice of assumptions

w» Brakerski, DoOttling, Garg, Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles.

2019.
»FHE, based on LWE

= More general than ours, less practically efficient

Y

What is Compressible (F)HE<e

= An (F)HE Scheme (KeyGen, Enc, Dec, Eval)
= Encrypted output € Eval(circuit, encrypted Input)

= But Dec is broken into:
= Compression: c* < Compress(cl,c2,...)

= Compressed decryption: m1,m2,...< cDec(c¥)

Background: [PVWO08] Packing

»Recall Regev encrypftion
=»A (1+ 1) (pseudorandom) vector encrypts one scalar
-((Hﬂ — 1), ct) = encode(m) + e (mod q), |e| < q

= [PVWO8]: Regev-like with rate 1-¢
= A (1+ 1) (pseudorandom) vector encrypts r scalars

= Can grow r to get rate 1-¢ for any >0
»[S| —I]- ct = encode(im) + € (imod q), |é| < q
= Each row of this equation is a Regev encryption

Y

Background: “Gadget Maftrices” [MP12] A

Vv

= A rectangular matrix ¢ € Z7~™
= A known “public frapdoor” G=1(0) € Z7**™: G
a. Entries of 671(0) are small, |671(0)]e < g K

b. G~1(0) has full rank over the reals
. GXG1(0) =0 (modq)

=For C € Z;*™, G~*(C) is a redundant version of C
= An m x m matrix satisfying a,b, and G x ¢~1(C) = C
= Can be found efficiently from C
=The more rectangular G, the smaller |¢~1(:)| can get

Y

Background: “Gadget Matrices” [MP12] A

Example, bit-decomposition: £ = |log qJ m=n-<¢

12...2¢71
G — iL 7
12..2¢°1

" 0.
il W 0,
-1 - n
G—-(0) = —1 C__{
28
—1 &

Background: [GSW13] HE Scheme

» Pixt: scalars (e.g., bits), Ctxt: n x m matrices
»C € Zp*™encrypts o € Z, wrt sk if
sk-C=0-sk-G+e(modq) |e|<q
»(C, + C, encrypts o; + oy
»C, - G~1(C,) encrypts g0,
= Multiplication noise termis oy - €, + é; - G~1(C,)

»The scalars o should be small

Y

Our Construction

The Two Parts of Our Compressible HE

= [ow-rate scheme for homomorphism
= A slight variant of GSW

= High-rate scheme for compression

»Somewhat similar to the matrix HE scheme of [HAO16]
» Pixt, ctxt are maitrices of similar dimensions
= \We describe two variants of that scheme

»The two parts “play nice” together
= They share the same secret key
= Can pack many GSW ctxts in one high-rate ctxt

Y

The Low-Rate Scheme

= ike GSW, but skis a matrix, S = [S'| —]
= As in [PVWOS8]
=|f C € Zg"™ encrypts o € Z, then
S C=06-S-G+E(modq) |E|<q
»Each row is a GSW invariant, all with the same o
= Homomorphic operations work exactly as in GSW
»C, + C, encrypts o; + g,, C; - G~1(C,) encrypts g, 0,

= Multiplication noise termis o, - E, + E; - G~1(C,)

Y

The High-Rate Scheme

» Cixt C encrypts ptxt M wrt S if
S:-C=encode(M)+ E (modq) |E|Kq
= Encoding is needed to remove noise E on decryption

= Two variants, differ in how they encode M

= QOne uses a “nearly square” hew gadget matrix
= Pixt, ctxt are both matrices modulo g

= Another variant uses scaling instead
= Pixt are matrices modulo some p < g

A Nearly-Sguare Gadget Matrix

=To get high rate, we want to add "just a little
redundancy”’, enough to remove a little noise

=Want “only a little rectangular” gadget matrix H

= Consider what we need from F = H~1(0):
= |t needs 1o be atf least somewhat small
= |t should have full rank over the reals

=But also H X F = 0 (mod q)
= So F only has a very small rank modulo g
»Recall that H is nearly-square

Y

A Nearly-Sguare Gadget Matrix
= Example when g = p* — 1.for some integers p, t

B p- p
pt™t 1 p p
| et F = pt=2 pt-1 1

Canrelax g =pt—1to
q=pt—aforsmall a

L p p p 1 |
. . . -1
= |F| Is small enough to remove noise of size upto e

= F has full rank over the reals, only rank one mod g

=H €z is any basis of the null space of F mod g
»Caonuse H- =HQ L. (foranyr), with E. = H-*(0) = F Q L.

The High-Rate Scheme (15" Variant)

Ctxt € € Z;*™" encrypts ptxt M € Z;°"™ wrt S if
S:C=M-H+E(modq) |E| <q
E is small enough so H can be used to remove it

Note the dimensions of the various maftrices

7 g 1y g /'D
S'| —I ny. =nrM | H T E
N1 C
=g+
1 =1 T 4

Rate is ng/nin,

Y

The High-Rate Scheme (15" Variant)

Ctxt € € Z;*™"™ encrypts ptxt M € Z;°"™ wrt S if
S 'C=M-H+E(modq) |E|<gq
E is small enough so H can be used to remove it

Compressed Decryption:
X =5-C=M-H+E (mod q)
Y=X-F=E-F (modq)
Since H - F =0 (mod q)
If |E-F|<q/2thenY =E :F over the integers
V Can multiply by F~1 to recover E, then remove it

Compression

= Consider many GSW bit encryptions
S - Cu,v,w = Oyvw 5S-G+ Eu,v,w

»u,v<ng w=<<¥=logqg

No Xno

=Enough bits g,,,,,, for a plaintext matrix M € Z,

=let T, , be the ng X ng singlefon matrix e, @ e,

= | only in enfry u,v, O elsewhere

0 A

Y

= Also let T, = €Z;"™ |Note [S'|—I1-Thy = Ty

—Tu,v 10

Vv

Y

Compression

=To pack all the GSW ciphertexts Cy ,,, we set

C* = Z Cuvw G 1(2¥ Ty, -H) (mod q)

WY,W ngxXm mxn;
»S-C"=)S- Cuvw G_l(zw ' Tllt,v ' H)
- Z(O-u,v,w - 5-G+ Eu,v,w) ' G_l(zw ' Tl’L,v ' H)

=22% -0y pw-S - Tyyp-H + noise

= (Zu,v QZW AR au,v,W) : Tu,v) - H 4+ noise
\ J

Zuw

'M

Y

The High-Rate Scheme (2" Variant)

= Ctxt C € Z;*"" encrypts ptxt M € Z;°""™ wrt § if
S-C= [q/pj .M + E (mod q) |E| < q/Zp
»p < g, but close (say p = g17¢)
= Use scaling to remove noise on decrypftion

= Comypression is similar o before

= Except that G71(2% - Ty, - H) is replaced by
GTH(2Y - 1/pl - Tiw).

Y

Single Server PIR

Application to Single-Server PIR

Compressible HE easily yields high-rate PIR
But we also want practical efficiency

Our Approach to Single-Server PIR

Start from the basic scheme of [KO9%7]
Think of N-enfry DB as an N; x N/ -mafrix

0 x

0 X%
1Xx

0 x

0 x

+

I | |

Continue recursively on the ¥/ -database
Almost all the work is in the 15t step

Y

A Few More Pieces of Magic A

= Multiplying a GSW ctxt by high-rate cixt yields a high-
rate ciphertext of the product
»Same for multiplying a GSW ctxt by plaintext M

= The products 0 x

1 X []
vield high-rate encryption of the database

= High-rate scheme is additively homomorphic

= All we need is to add across the 15" dimension
»The same holds for the recursive levels

Y

From Here to Practical Single-Server PIR A

= Many more tricks

= Pre-processing the db to eliminate FFTs

= Switching to RLWE

= Different gadget matrices G in different steps
= Using modulus switching

Y

The End-Result PIR

3x3 2X2

=Rate is (2/3)% = 4/9

S-C=M-H+E

=S Is a 2-by-3 matrix (over a ring)
= H is A 2-by-3 matrix (over aring)

= Total work ~ 1.5 multiplies per database byte
= Modulo single-precision numbers (upto 60 bits)
= Should be 10-20 cycles per byte in software

Y

The End-Result PIR A

= First single-server PIR plausibly efficient enough 1o
nandle large databases

= [ess work than whole database AES encryption

= Which you would need (for communication security) if you
used the naive solution

»So we beat the naive solution not only on bandwidth but
also on server computation

Y

