Cryptographic Hash Functions and their many applications

Shai Halevi - IBM Research

USENIX Securitity - August 2009

Thanks to Charanjit Jutla and Hugo Krawczyk

M'rıati gire hesf furictions?

\lrcorner Just a method of compressing strings
-E.g., H: $\{0,1\}^{*} \rightarrow\{0,1\}^{160}$

- Input is called "message", output is "digest"
- Why would you want to do this?
- Short, fixed-size better than long, variable-size
- True also for non-crypto hash functions
- Digest can be added for redundancy
- Digest hides possible structure in message

But not Howy are they built? always...

Typically using Merkle-Damgärd iteration: 1. Start from a "compression function"
$-h:\{0,1\}^{b+n} \rightarrow\{0,1\}^{n}$

2. Iterate it

Whatitare they good for?

"Modern, collision resistant hash functions were designed to create small, fixed size message digests so that a digest could act as a proxy for a possibly very large variable length message in a diligital signature algorithm, such as RSA or DSA. These hash functions have since been widely used for many other "ancillary" applications, including hash-based message authentication codes, pseudo random number generators, and key derivation functions.
"Request for Candidate Algorithm Nominations", -- NIST, November 2007
Sorrie Exemplos

- Signatures: $\quad \operatorname{sign}(M)=\operatorname{RSA}^{-1}(H(M))$
\square Message-authentication: tag $=\mathrm{H}(\mathrm{Key}, \mathrm{M})$
- Commitment: commit(M)=H(M,...)
- Key derivation: AES-key = H(DH-value)
- Removing interaction [Fiat-Shamir, 1987]
- Take interactive identification protocol
- Replace one side by a hash function Challenge $=\mathrm{H}$ (smthng, context)
- Get non-interactive signature scheme_smihng, response

Part l: Random functions vs. hash functions

Fiennclorn fusictions

What we really want is H that behaves "just like a random function":
Digest $\mathrm{d}=\mathrm{H}(\mathrm{M})$ chosen uniformly for each M

- Digest $\mathrm{d}=\mathrm{H}(\mathrm{M})$ has no correlation with M
- For distinct M_{i}, M_{2}, \ldots, digests $d_{i}=H\left(M_{i}\right)$ are completely uncorrelated to each other
- Cannot find collisions, or even near-collisions
- Cannot find \mathbf{M} to "hit" a specific d
- Cannot find fixed-points (d = H(d))
- etc.

The "Fiandonn-Oracle paracligno"

[Bellare-Rogaway, 1993]

1. Pretend hash function is really this good
2. Design a secure cryptosystem using it

- Prove security relative to a "random oracle"

The "Fianclons-Oracie paracligno"

1. Pretend hash function is really this good
2. Design a secure cryptosystem using it

- Prove security relative to a "random oracle"

3. Replace oracle with a hash function

- Hope that it remains secure

The "Fianiclonn-Oracie paradigns"

 [Bellare-Rogaway, 1993]1. Pretend hash function is really this good
2. Design a secure cryptosystem using it

- Prove security relative to a "random oracle"

3. Replace oracle with a hash function

- Hope that it remains secure

」 Very successful paradigm, many schemes

- E.gi, OAEP encrypiion, FDH,PSS signatures
- Also all the examples from before...
- Schemes seem to "withstand test of time"
Fiensidors oremes: rentionele

S is some crypto scheme (e.g., signatures), that uses a hash function H

- S proven secure when H is random function
\rightarrow Any attack on real-world 5 must use some "nonrandom property" of H
- We should have chosen a better H
- without that "nonrandom property"

」 Caveat: how do we know what "nonrandom properties" are important?

This rationale isnjt sound

[Canetili-Goldreich-H 1997]

- Exist signature schemes that are:

1. Provably secure wrt a random function
2. Easily broken for EVERY hash function

- Idea: hash functions are computable
- This is a "nonrandom property" by itself
- Exhibit a scheme which is secure only for "non-computable H's"
- Scheme is (very) "contrived"

Coritrived exemsiple

- Start from any secure signature scheme
- Denote signature algorithm by SIG1H(key,msg)
- Change SIG1 to SIG2 as follows: SIG2H(key,msg): interprate msg as code Π
- If $\Pi(i)=H(i)$ for $i=1,2,3, \ldots,|m s g|$, then output key
- Else output the same as SIG1H(key,msg)
\lrcorner If H is random, always the "Else" case
\lrcorner If H is a hash function, attempting to sign the code of H outputs the secret key

Cemitionielry riote

- ROM proofs may not mean what you think...
- Still they give valuable assurance, rule out "almost all realistic attacks"
- What "nonrandom properties" are important for OAEP / FDH / PSS / ...?
\lrcorner How would these scheme be affected by a weakness in the hash function in use?
ROM may lead to careless implementation

Merkle-Damgård vs, random functions

- Recall: we often construct our hash functions from compression functions
- Even if compression is random, hash is not
- E.g., H(key|M) subject to extension attack
- H(key | M|M') = h(H(key|M), M')
- Minor changes to MD fix this
- But they come with a price (e.g. prefix-free encoding)
\lrcorner Compression also built from low-level blocks
- E.g., Davies-Meyer constriuction, $\mathrm{h}(\mathrm{c}, \mathrm{M})=\mathrm{E}_{\mathrm{M}}(\mathrm{c}) \oplus \mathrm{c}$
- Provide yet more structure, can lead to attacks on provable ROM schemes [H-Krawczyk 2007]

Part II: Using hash functions in applications

Using "irsiperfect" rielsh furictions

Applications should rely only on "specific security properties" of hash functions

- Try to make these properties as "standard" and as weak as possible
- Increases the odds of long-term security
- When weaknesses are found in hash function, application more likely to survive
-E.g., MD5 is badly broken, but HMAC-MD5 is barely scratched
Security reculirerrierris

Deterministic hashing

- Attacker chooses $M, d=H(M)$
- Hashing with a random salt
- Attacker chooses M, then good guy chooses public salt, $\mathrm{d}=\mathrm{H}($ salt, M$)$
- Hashing random messages
-M random, d=H(M)
- Hashing with a secret key
- Attacker chooses M, d=H(key,M)
Deterrsifistic suessuisug
- Collision Resistance
- Attacker cannot find M,M' such that $H(M)=H\left(M^{\prime}\right)$
- Also many other properties
- Hard to find fixed-points, near-collisions, M s.t. H(M) has low Hamming weight, etc.
Fels'ring witi'h pulolic seltit

J Target-Collision-Resistance (TCR)

- Attacker chooses M, then given random salt, cannot find M^{\prime} such that $\mathrm{H}($ salt,, M$)=\mathrm{H}\left(\right.$ sall,, $\left.\mathrm{M}^{\prime}\right)$
- enhanced TRC (eTCR)
- Attacker chooses M, then given random salt, cannot find M^{\prime}, salt t^{\prime} s.t. $\mathrm{H}($ salt, M$)=\mathrm{H}\left(\right.$ salt $\left.{ }^{\prime}, \mathrm{M}^{\prime}\right)$
Hels'rinig rensulors rriessages
- Second Preimage Resistance
- Given random M, attacker cannot find $\mathrm{M}^{\mathbf{}}$ such that $H(M)=H\left(M^{\prime}\right)$
- One-wayness
- Given d=H(M) for random M, attiacker cannot find M^{\prime} such that $\mathrm{H}\left(\mathrm{M}^{\prime}\right)=\mathrm{d}$
- Extraction*
- For random sallt, high-entiropy M, the digest $\mathrm{d}=\mathrm{H}($ salt $t, \mathrm{M})$ is close to being uniform
* Combinatorial, not cryptographic
「as'ring with s secret sey
- Pseudo-Random Functions
- The mapping $\mathrm{M} \mapsto \mathrm{H}($ key, M$)$ for secret key looks random to an attacker
- Universal hashing*
- For all $M \neq M^{\prime}, \operatorname{Pr}_{\text {ken }}\left[H(k e y, M)=H\left(\right.\right.$ key,$\left.\left.M^{\prime}\right)\right]<\varepsilon$

$$
\begin{aligned}
& \text { Applicetion 1: } \\
& \text { Digitell sigramures }
\end{aligned}
$$

\square Hash-then-sign paradigm

- First shorten the message, $d=H(M)$
- Then sign the digest, $\quad \mathrm{s}=$ SIGN(d)
- Relies on collision resistance
- If $H(M)=H\left(M^{\prime}\right)$ then s is a signature on both
\rightarrow Attacks on MD5, SHA-1 threaten current signatures
- MD5 atilacks can be used to get bad CA cert [Stevens et al. 2009]

Collision resistance is hasird

Attacker works off-line (find M, M^{\prime})

- Can use state-of-the-art cryptanalysis, as much computation power as it can gather, without being detected!!
- Helped by birthday attack (e.g., 2^{80} vs 2^{160})
- Well worth the effort
- One collision \Rightarrow forgery for any signer

Sigheitures without CPirlF

[Naror-Yung 1989, Bellare-Rogaway 1997]

- Use randomized hashing
- To sign M, first choose fresh random salt
- Set d= H(salt, M), s= SIGN(salt || d)
- Attack scenario (collision game):
- Attacker chooses M, X
- Signer chooses random salt
- Attacker must find M^{\prime} s.t. $\mathrm{H}($ (sált,, M$)=\mathrm{H}\left(\right.$ sàlt, $\left.\mathrm{M}^{\prime}\right)$
- Attack is inherently on-line
- Only rely on target collision resistance
- 「Ci helshirig for sigramitures
- Not every randomization works
- H(M|salt) may be subject to collision attacks
- when H is Merkle-Damgård
- Yet this is what PSS does (and it's provable in the ROM)
- Many constructions "in principle"
- From any one-way function
- Some engineering challenges
- Most constructions use long/variable-size randomness, don't preserve Merkle-Damgård
- Also, signing salt means changing the underlying signature schemes

Signatures with enhanced TCR

[H-Krawczyk 2006]

- Use "stronger randomized hashing", eTCR
- To sign M, first choose fresh random salt
- Set d = H(salt, M), s = SIGN(d)
- Attack scenario (collision game):
- Attacker chooses M
- Signer chooses random salt
- Attacker needs M^{\prime}, salli' s.t. H(salti, M) $=\mathrm{H}\left(\right.$ sadit $\left.^{\prime}, \mathrm{M}^{\prime}\right)$
- Attack is still inherently on-line

Randomized hashing with RMX [H-Krawczyk 2006]

- Use simple message-randomization - RMX: $\mathrm{M}=\left(\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots, \mathrm{M}_{\mathrm{L}}\right), \mathrm{r} \mapsto$ $\left(r, M_{1} \oplus r, M_{2} \oplus r, \ldots, M_{L} \oplus r\right)$
- Hash(RMX(r,M)) is eTCR when:
- Hash is Merkle-Damgård, and
- Compression function is ~ $2^{\text {nd }}$-preimage-resistant
\lrcorner Signature: [r, SIGN(Hash(RMX (r,M)))]
- r fresh per signature, one block (e.g. 512 bits)
- No change in Hash, no signing of r

Preservirig hielsin-tisleri-siggn

$$
\begin{gathered}
\text { Application 2: } \\
\text { Message Eluthenticeition }
\end{gathered}
$$

- Sender, Receiver, share a secret key
- Compute an authentication tag

$$
-\operatorname{tag}=\text { MAC (key, M) }
$$

- Sender sends (M, tag)
- Receiver verifies that tag matches M
\lrcorner Attacker cannot forge tags without key

Althenticetion with HMAAC

 [Bellare-Cenneiii-Kawcezkk 1996]- Simple key-prepend/append have problems when used with a Merkle-Damgård hash
- tag=H(key | M) subject to extension attacks - tag=H(M | key) relies on collision resistance
- HMAC: Compute tag = H(key | H(key | M))
- About as fast as key-prepend for a MD hash
\lrcorner Relies only on PRF quallity of hash
$-\mathrm{M} \rightarrow \mathrm{H}($ key $/ \mathrm{M})$ looks random when key is secret

Authenticetion with HMAAC

 [Bellare-Canetii-Krawceryk 1996]- Simple key-prepend/append have problems when used namgård hash -ta As a result, barely affected by collision
- HMA attacks on MD5/SHA1
\lrcorner Relies only on PRF property of hash
$-\mathrm{M} \rightarrow \mathrm{H}($ key $\mid \mathrm{M})$ looks random when key is secret

Carter-Myegnan euthentication

 [Wegman-Carter 198%,....]Compress message with hash, $\mathrm{t}=\mathrm{H}\left(\mathrm{Key}_{1,1}, \mathrm{M}\right)$

- Hide t using a PRF, tag = t \oplus PRF(key $_{2}$, nonce)
- PRF can be AES, HMAC, RC4, etc.
- Only applied to a short nonce, typically not a performance bottleneck
\lrcorner Secure if the PRF is good, H is "universal"
- For $M \neq \mathrm{M}^{\prime}, \Delta, \operatorname{Pr} r_{k e y}\left[H(k e y, M) \oplus H\left(\right.\right.$ key, $\left.\left.\left.\mathrm{M}^{\prime}\right)=\Delta\right]<\varepsilon\right)$
- Not cryptographic, can be very fast
Felst Uriverseal Has'riing
- "Universality" is combinatorial, provable
\Rightarrow no need for "security margins" in design
- Many works on fast implementations

From inner-product, $\mathrm{H}_{k 1, k_{2}}\left(\mathrm{M}_{1}, \mathrm{M}_{2}\right)=\left(K_{1}+\mathrm{M}_{1}\right) \cdot\left(K_{2}+\mathrm{M}_{2}\right)$

- [H-Krawczyk'97, Black et al.' 99, ...]

From polynomial evaluation $H_{k}\left(M_{1}, \ldots, M_{L}\right)=\Sigma_{i} M_{i} k_{i}$
[[Krawczyk'94, Shoup'96, Bernstein'05, McGrewViega'06,...]

- As fast as 2-3 cycle-per-byte (for long M’s)
- Software implementation, contemporary CPUs

Part III:
 Designing a hash function

Fugue: IBM's candidate for the NIST hash competition

Design a compression function?

PROs: modular design, reduce to the "simpler problem" of compressing fixed-length strings

- Many things are known about transforming compression into hash
CONs: compression \rightarrow hash has its problems
- lt's not free (e.g. message encoding)
- Some aittecks based on the MD structure
- Extension attacks (rely on $H(x \mid y)=h(H(x), y)$)
- "Birthday attacks" (herding, multicollisions, ...)

Example attiacks herding

[Kelsey-Kohno 2006]

- Find many off-line collisions
- "Tree structure" with $\sim 2^{n / 3} \mathrm{~d}_{\mathrm{i}, \mathrm{j}}$'s
- Takes ~ $2^{2 n / 3}$ time
- Publish final d
- Then for any prefix P

-Find "linking block" L s.t. H(P)L) in the tree
- Takes ~ $2^{\text {2nns }}$ time
- Read off the tree the suffix S to get to d
\rightarrow Show an extension of P s.t. H(P|L|S $)=$ d
The culprit: srraell interrriediente state
- With a compression function, we:
- Work hard on current message block
- Throw away this work, keep only n-bit state
- Alternative: keep a large state
- Work hard on current message block/word
- Update some part of the big state
\lrcorner More flexible approach
- Also more opportunities to mess things up

The hash function Girindahl

 [Knudsen-Rechberger-Thomsen 2007]

- Process one 4-byte word at a time
- One AES-like mixing step per word of input
- After some final processing, output 8 words
- Collision attack by Peyrin (2007)
- Complexity ~ 2^{112} (still better than brute-force)
\lrcorner Recently improved to ~ 2^{100} [Khovratovich 2009]
- "Start from a collision and go backwards"

The hesh function "Fugue"

[H-Hall-Jutla 2008]

- Proof-driven design
- Designed to enable analysis
\rightarrow Proofs that Peyrin-style attacks do not work
- State of 30 4-byte words = 120 bytes
- Two "super-mixing" rounds per word of input
- Each applied to only 16 bytes of the state
- With some extira linear diffusion
\lrcorner Super-mixing is AES-like
- But uses stronger MDS codes

Fugue-256

Output 8 words $=256$ bits

Collision attacks

Processing one input word

SMMX isı Fugue

\perp Similar to one AES round

- Works on a 4x4 matrix of bytes
- Starts with S-box substitution
- Byte b, $S[256]=\{\ldots\}$;
- $\mathrm{b}=\mathrm{S}[\mathrm{b}]$;
- Does linear mixing
- Stironger mixing than AES
- Diagonal bytes as in AES
- Other bytes are mixed into both column and row

SMIX is Fugue

- In algebraic notation:

$$
\left(\begin{array}{c}
b_{1}^{\prime} \\
b_{2}^{\prime} \\
\vdots \\
b_{16}^{\prime}
\end{array}\right)=\mathbf{M}_{10016} \times\left(\begin{array}{c}
S\left[b_{1}\right] \\
S\left[b_{2}\right] \\
\vdots \\
S\left[b_{16}\right]
\end{array}\right)
$$

$\lrcorner \mathrm{M}$ generates a good linear code

- If all the bí byies but 4 are zero then ≥ 13 of the $S[b]$ bytes must be nonzero
- And other such properties

Aralyzirig interra!! collisions**

* a bit oversimplified

Arialyzurig interraj collisions**

$\Delta_{25-1}+0$	> 3 columns
$\Delta_{28,4} \neq 0$	\oplus
$\Delta_{28,4} \neq 0$	$\leq 4976 \mathrm{CL}$ erg byte dififs
now $\Delta_{28_{1}+}+0$	> 3 columns
still $\Delta_{14} \pm 0$	\oplus
before SMIX: $\Delta_{144} \neq 0$	SMIX
before input word: $\Delta_{1} \neq 0$	\triangle
after input word: Δ State=0	

Arablyzirig initerraj collisions**

before input: $\Delta_{1}=$?, $\Delta_{25-30} \neq 0 \quad \Delta^{\prime}$
$\Delta_{25-1} \neq 0 \quad 3$ columns

$\Delta_{28-4} \neq 0$	\oplus	
$\Delta_{28-4} \neq 0$	SMIX	

now $\Delta_{28-1} \neq 0 \quad \gg 3$ columns
still $\Delta_{1-4} \neq 0$
before SMIX: $\Delta_{1-4} \neq 0$
SMIX
before input word: $\Delta_{1} \neq 0 \Delta$
after input word: Δ State $=0$

Table 8: Evolution of

The analysis from previous slides was upto here

Many nonzero byte differences before the SMIX operations

${ }^{\text {a }}$ All blank cells are zero. Primed variables are defined in Section 10.1.4. The shaded cells are the ones affected in that step. The bozed variables are the ones that are not determined by variables from earier (lower) steps. Variables that are necessarily non-zero are in capital. Rounds are referred to by the subscript on the TIX step for that round. "Continued on next page.

Table 9: Evolution of Differential State for internal Collision (contd.)

[^0]
Analyzing internal collisions

\lrcorner What does this mean? Consider this atitick:

- Attacker feeds in random $\mathrm{M}_{1}, \mathrm{M}_{2}, \ldots$ and $\mathrm{M}_{1}{ }_{1}, \mathrm{M}^{\prime}{ }_{2}, \ldots$
- Until State ${ }_{\mathrm{L}} \oplus$ State' $_{\mathrm{L}}=$ some "good Δ "
- Then it searches for suffixed $\left(M_{L+1}, \ldots, M_{L+4}\right)$, ($\mathrm{M}_{\mathrm{L}+1}^{\prime}, \ldots, \mathrm{M}_{\mathrm{L}+4}^{\prime}$) that will induce internal collision

Theorem*: For any fixed Δ,
$\operatorname{Pr}[\exists$ suffixes that induce collision $]<2^{-150}$

* Relies on a very mild independence assumptions
Arralyzinig irntersabl collisioris

Why do we care about this analysis?

- Peyrin's attacks are of this type
- All differential attacks can be seen as (optimizations of) this attack
- Entities that are not controlled by attack are always presumed random
A A known "collision trace" is as close as we can get to understanding collision resistance
Fugue: coriculudirig rerriarks
- Similar analysis also for external collisions - "Unusually thorough" level of analysis
- Performance comparable to SHA-256 - But more amenable to parallelism
- One of 14 submissions that were selected by NIST to advance to $2^{\text {nd }}$ round of the SHAB competition

Morens

Hash functions are very useful

- We want them to behave "just like random functions"
- But they don't really
- Applications should be designed to rely on "as weak as practical" properties of hashing
- E.g., TCR/eTCR rather than collision-resistance
- A taste of how a hash function is built

Thank you!

[^0]: ${ }^{\text {a }}$ Primed variables are defined in Sections 10.1.5 and 10.1.6.

