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 Homomorphic encryption: Can evaluate some 
functions on encrypted data

◦ E.g., from Enc(x), Enc(y) compute Enc(x+y)

 Fully-homomorphic encryption: Can evaluate 
any function on encrypted data

◦ E.g., from Enc(x), Enc(y) compute Enc(x3y-y7+xy)
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Evaluate low-degree 
polynomials on 
encrypted data
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 Storing an encrypted file F on a remote server

 Later send keyword w to server, get answer, 
determine whether F contains w

◦ Trivially: server returns the entire encrypted file

◦ We want: answer length independent of |F|

Claim: to do this, sufficient to evaluate 
low-degree polynomials on encrypted data

◦ degree ~ security parameter
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 File is encrypted bit by bit, E(F1) … E(Ft)

 Word has s bits w1w2…ws

 For i=1,2,…,t-s+1, server computes the bit
ci =

◦ ci=1 if w=FiFi+1…Fi+s-1 (w found in position i) else ci=0

◦ Each ci is a degree-s polynomial in the Fi‟s

 Trick from [Smolansky‟93] to get degree-n polynomials,
error-probability 2-n

 Return n random subset-sums
of the ci‟s (mod 2) to client

◦ Still degree-n, another 2-n error
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 Want an encryption scheme (Gen, Enc, Dec)
◦ Say, symmetric bit-by-bit encryption

◦ Semantically secure, E(0)E(1)

 Another procedure: C*=Eval(f, C1,…Ct)
◦ f is a binary polynomial in t variables, degreen

 Represented as arithmetic circuit

◦ The Ci‟s are ciphertexts

 For any such f, and any Ci=Enc(xi) it holds that
Dec( Eval(f, C1,…Ct) ) = f(x1,…,xt)
◦ Also |Eval(f,…)| does not depend

on the “size” of f (i.e., # of vars
or # of monomials, circuit-size)

◦ That‟s called “compactness”
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 Shared secret key: odd number p

 To encrypt a bit m:

◦ Choose at random small r, large q

◦ Output c = pq + 2r + m

 Ciphertext is close to a multiple of p

 m = LSB of distance to nearest multiple of p 

 To decrypt c:
◦ Output m = (c mod p) mod 2

=   c – p • [[c/p]] mod 2
=   c – [[c/p]] mod 2 

=   LSB(c)  XOR  LSB([[c/p]])
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[[c/p]] is rounding 
of the rational c/p 
to nearest integer

Noise much 
smaller than p

The “noise”
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 Basically because:

◦ If you add or multiply two near-multiples 
of p, you get another near multiple of p…
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 c1=q1p+2r1+m1,   c2=q2p+2r2+m2

 c1+c2 = (q1+q2)p + 2(r1+r2) + (m1+m2)

◦ 2(r1+r2)+(m1+m2) still much smaller than p

c1+c2 mod p = 2(r1+r2) + (m1+m2)

 c1 x c2 = (c1q2+q1c2q1q2p)p 
+ 2(2r1r2+r1m2+m1r2) + m1m2

◦ 2(2r1r2+…) still smaller than p

c1xc2 mod p = 2(2r1r2+…)+m1m2

Distance to nearest multiple of p
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 c1=q1p+2r1+m1, …, ct=qtp+2rt+mt

 Let f be a multivariate poly with integer 
coefficients (sequence of +‟s and x‟s)

 Let c = Eval(f, c1, …, ct) = f(c1, …, ct)

◦ f(c1, …, ct) = f(m1+2r1, …, mt+2rt)  + qp
= f(m1, …, mt)     + 2r    + qp

 (c mod p) mod 2 = f(m1, …, mt)

Suppose this noise is much smaller than p

That‟s what we want!
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 Can keep adding and multiplying until the 
“noise term” grows larger than p/2

◦ Noise doubles on addition, squares on multiplication

◦ Initial noise of size ~ 2n

◦ Multiplying d ciphertexts  noise of size ~2dn

 We choose r ~ 2n, p ~ 2n   (and q ~ 2n )

◦ Can compute polynomials of 
degree ~n before the noise grows
too large

2 5
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 Ciphertext size grows with degree of f

◦ Also (slowly) with # of terms

 Instead, publish one “noiseless integer” N=pq

◦ For symmetric encryption, include N with the 
secret key and with every ciphertext

◦ For technical reasons: q is odd, the qi‟s
are chosen from [q] rather than from [2n ]

 Ciphertext arithmetic mod N

Ciphertext-size remains 
always the same
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Used to prove 
security

Rothblum‟11:  Any homomorphic and compact 
symmetric encryption (wrt class C including 
linear functions), can be turned into public key
◦ Still homomorphic and compact wrt essentially the 

same class of functions C

 Public key: t random bits m=(m1…mt) and 
their symmetric encryption ci=Encsk(mi)
◦ t larger than size of evaluated ciphertext

 NewEncpk (b): Choose random s
s.t. <s,m>=b,  use Eval to get 
c*=Encsk (<s,m>)
◦ Note that s  c* is shrinking
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 The approximate-GCD problem:

◦ Input: integers w0, w1,…, wt, 

 Chosen as w0=q0p, wi=qip + ri (p and q0 are odd)

 p$[0,P], qi$[0,Q], ri$[0,R] (with R << P << Q)

◦ Task: find p

 Thm: If we can distinguish Enc(0)/Enc(1) for 
some p, then we can find that p

◦ Roughly: the LSB of ri is a “hard core bit”

 If approx-GCD is hard then
scheme is secure

 (Later: Is approx-GCD hard?)
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A. The approximate-GCD problem:

◦ Input: w0=q0p, {wi=qip+ri}

 p$[0,P], qi$[0,Q], ri$[0,R] (with R << P << Q)

◦ Task: find p

B. The cryptosystem

◦ Input: : N=q0p, {mj, cj=qjp+2rj+mj}, c=qp+2r+m

 p$[0,P], qi$[0,Q], ri$[0,R‟] (with R‟ << P << Q)

◦ Task: distinguish m=0 from m=1

Thm: Solving B  solving A

◦ small caveat: R smaller than R‟
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 Input: w0=q0p, {wi = qip + ri}

 Use the wi‟s to form the cj‟s and c

 Amplify the distinguishing advantage

◦ From any noticeable e to almost 1

◦ This is where we need R‟>R

 Use reliable distinguisher to learn q0

◦ Using the binary GCD procedure

 Finally p = w0/q0
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 We have wi=qip+ri, need xi=qi‟p+2ri

◦ Then we can add the LSBs to get cj = xj + mj

 Set N=w0,  xi=2wi mod N

◦ Actually xi=2(wi+ri) mod N with ri random < R‟ 

 Correctness:

◦ The multipliers qi, noise ri, behave independently

 As long as noise remain below p/2

◦ ri+rj distributed almost as rj

 R‟>R by a super-polynomial factor

◦ 2qi mod q0 is random in [q0]
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 Given any integer z=qp+r, with r<R:
Set c = [z+ m+2(r + subsetSum{wi})] mod N

◦ For random r<R‟,  random bit m

 For every z (with small noise), c is a nearly 
random ciphertext for m+LSB(r)

◦ subsetSum(qi‟s) mod q0 almost uniform in [q0]

◦ subsetSum(ri‟s)+r distributed almost identically to r

 For every z=qp+r, generate
random ciphertexts for bits
related to LSB(r)
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 Given any integer z=qp+r, with r<R:
Set c = [z+ m+2(r + subsetSum{wi})] mod N

◦ For random r<R‟,  random bit m

 For every z (with small noise), c is a nearly 
random ciphertext for m+LSB(r)

◦ A guess for c mod p mod 2  vote for r mod 2

 Choose many random c‟s, take majority

Noticeable advantage for random c‟s

 Reliably computing r mod 2
for every z with small noise
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z = (2s)p + r 
 z/2=sp+r/2
 floor(z/2) =

sp+floor(r/2)

 From any z=qp+r (r<R‟) can get r mod 2

◦ Note: z = q+r mod 2 (since p is odd)

◦ So (q mod 2) = (r mod 2)  (z mod 2)

 Given z1, z2, both near multiples of p

◦ Get bi := qi mod 2,  if z1<z2 swap them

◦ If b1=b2=1, set z1:=z1z2, b1:=b1b2

 At least one of the bi‟s must be zero now

◦ For any bi=0 set zi := floor(zi/2)

 new-qi = old-qi/2

◦ Repeat until one zi is zero, 
output the other

B
in

a
ry

-
G

C
D
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 z1 = 99 = 5x19 + 4 (b1=1)
z2 = 54 = 3x19 – 3 (b2=1)
◦ z1‟ = z1-z2 = 45 = 2x19 + 7 (b1‟=0)

z1‟‟= floor(z1‟/2) = 22 = 1x19 + 3

 z1 = 54 = 3x19 – 3 (b1=1)
z2 = 22 = 1x19 + 3 (b2=1)
◦ z1‟ = z1-z2 = 32 = 2x19 – 6 (b1‟=0)

z1‟‟= z1‟/2  = 16 = 1x19 – 3

 z1 = 22 = 1x19 + 3 (b1=1)
z2 = 16 = 1x19 – 3 (b2=1)
◦ z1‟ = z1-z2 = 6 = 0x19 + 6

z1‟‟= z1‟/2  = 3 = 0x19 + 3
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 z1 = 16 = 1x19 – 3 (b1=1)
z2 =  3  = 0x19 + 3 (b2=0)

◦ z2‟‟ = floor(z2/2) = 1 = 0x19 + 1

 z1 = 16 = 1x19 – 3 (b1=1)
z2 =  1  = 0x19 + 1 (b2=0)

◦ z2‟‟ = floor(z2/2) = 0 

 Output  16 = 1x19 – 3

◦ Indeed 1=GCD(5,3)

22
Secure Computation and Efficiency
Bar-Ilan University, Israel     2011



Bar-Ilan University
Dept. of Computer Science

The odd part 
of the GCD

 zi=qip+ri, i=1,2,  z‟:=OurBinaryGCD(z1,z2)

◦ Then z‟ = GCD*(q1,q2)·p + r‟

◦ For random q,q‟, Pr[GCD(q,q‟)=1] ~ 0.6
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 Try (say) z‟:= OurBinaryGCD(w0,w1)

◦ Hope that z‟=1·p+r 

 Else try again with OurBinaryGCD(z‟,w2), etc.

 One you have  z‟=1·p+r, 
run OurBinaryGCD(w0,z‟)

◦ GCD(q0,1)=1, but the b1 bits along the way
spell out the binary representation of q0

 Once you learn q0, p=w0/q0

QED
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 We proved: If approximate-GCD is hard 
then the scheme is secure

 Next: is approximate-GCD really hard?
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 Several lattice-based approaches for solving 
approximate-GCD

◦ Approximate-GCD is related to Simultaneous 
Diophantine Approximation (SDA)

 Can use Lagarias‟es algorithm to attack it

◦ Studied in [Hawgrave-Graham01]

 We considered some extensions of his attacks

 These attacks run out of steam 
when |qi|>|p|2

◦ In our case |p|~n2, |qi|~n5 >> |p|2
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 Consider the rows of this matrix B:

◦ They span dim-(t+1) lattice

 (q0,q1,…,qt)  B is short

◦ 1st entry: q0R < Q·R

◦ ith entry (i>1): q0(qip+ri)-qi(q0p)=q0ri

 Less than Q·R in absolute value

 Total size less than Q·R·t

 vs. size ~Q·P (or more) for basis vectors

 Hopefully we can find it with 
a lattice-reduction algorithm 
(LLL or variants)

R w1 w2 … wt

-w0

-w0

…
-w0

B=
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 Is (q0,q1,…,qt)  B  the shortest in the lattice?

◦ Is it shorter than t·det(B)1/t+1 ?

 det(B) is small-ish (due to R in the corner)

◦ Need ((QP)tR)1/t+1 > QR

 t+1 > (log Q + log P – log R) / (log P – log R)
~ log Q/log P

 log Q = w(log2P)  need t=w(log P)

 Quality of LLL & co. degrades with t

◦ Find vectors of size ~ 2et·shortest

◦ t=w(log P)  2et·QR > det(B)1/t+1

◦ Contemporary lattice reduction
not strong enough

Minkowski bound

R w1 w2…wt

-w0

-w0

…
-w0
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converges to ~ logQ+logP

What LLL can find
min(blue,purple)+et

blue line
remains above
purple line

log Q
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 A Simple Scheme that supports computing 
low-degree polynomials on encrypted data

◦ Any fixed polynomial degree can be done

◦ To get degree-d, ciphertext size must be w(nd2)

 Already can be used in applications

◦ E.g., the keyword-match example

 Next we turn it into a
fully-homomorphic scheme
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 So far, can evaluate low-degree polynomials

f(x1, x2 ,…, xt)

f

…

x2

xt

x1
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 So far, can evaluate low-degree polynomials

 Can eval y=f(x1,x2…,xn) when xi‟s are “fresh”

 But y is “evaluated ciphertext”

◦ Can still be decrypted

◦ But eval Q(y) has too much noise

f
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x2

xt

x1

f(x1, x2 ,…, xt)
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 So far, can evaluate low-degree polynomials

 Bootstrapping to handle higher degrees:

 For a ciphertext c, consider Dc(sk) = Decsk(c)
◦ Hope: Dc(*) has a low degree in sk

◦ Then so are
Ac1,c2(sk) = Decsk(c1) + Decsk(c2)

and  Mc1,c2(sk) = Decsk(c1) x Decsk(c2)

f
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Mc1,c2sk1

sk2

skn

…

 Include in the public key also Encpk(sk)

 Homomorphic computation 
applied only to the “fresh” 

encryption of sk

sk1

sk2

skn

…

x1 x2

c1 c2

Mc1,c2(sk)

= Decsk(c1) x Decsk(c2) = x1 x x2

c

Requires 
“circular 
security”
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 Fix a scheme (Gen, Enc, Dec, Eval) 

 For a class F  of functions , denote
◦ CF = { Eval(f, c1,…,ct) : f  F, ci  Enc(0/1) }

◦ Encrypt some t bits and evaluate on them some fF

 Scheme bootstrappable if exists F for which:
◦ Eval “works” for F

  f  F, ci  Enc(xi), Dec( Eval(f,c1,…,ct) ) = f(x1,…,xt)

◦ Decryption + add/mult in F

  c1,c2CF , Ac1,c2(sk), Mc1,c2(sk)  F

Thm: Circular secure 
& Boostrappable

 Homomorphic for any func.
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c/p, rounded to 
nearest integer

 Decp(c) = LSB(c)  LSB([[c/p]])

◦ We have |c|~n5, |p|~n2

 Naïvely computing [[c/p]]  takes degree >n5

 Our scheme only supports degree ~ n

 Need to “squash the decryption circuit” 
in order to get a bootstrappable scheme

◦ Similar techniques to [Gentry 09]

Secure Computation and Efficiency
Bar-Ilan University, Israel     2011

37



Bar-Ilan University
Dept. of Computer Science

 Add to public key another “hint” about sk

◦ Hint should not break secrecy of encryption

 With hint, ciphertext can be publically
post-processed, leaving less work for Dec

 Idea is used in server-aided cryptography.

Old 
decryption 
algorithm

m

c sk

Dec
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Old 
decryption 
algorithm

m

c sk

Dec

c f(sk, r)

Public
Post-
Processing

sk*

m

Dec*

c*

Processed 
ciphertext

New 
approach

The hint 
about sk in 
public key

Hint in pub key lets 
anyone post-process
the ciphertext, leaving 
less work for Dec*
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 Old secret key is the integer p

 Add to public key many “real numbers”
◦ d1,d2, …, dt  [0,2) (with precision of ~|c| bits)

◦  sparse S for which SiS di = 1/p mod 2

 Post Processing: yi=c x di mod 2, i=1,…,t
◦ New ciphertext is c* = (c, y1, y2,…, yi)

 New secret key is char. vector of S (s1,…,st)
◦ si=1 if iS, si=0 otherwise

◦ c/p = c x(S sidi)= S siYi mod 2

Dec*(c*) = c – [[Si siYi]] mod 2

Secure Computation and Efficiency
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 Dec*s(c*)= LSB(c)  LSB([[ Si siyi ]])

Y1,0 Y1,-1 … Y1,1-p Y1,-p

Y2,0 Y2,-1 … Y2,1-p Y2,-p

Y3,0 Y3,-1 … Y3,1-p Y3,-p

… … … …

Yt,0 Yt,-1 … Yt,1-p Yt,-p

Secure Computation and Efficiency
Bar-Ilan University, Israel     2011

41

x s1

x s2

x s3

x st

b =
LSB([[Sisiyi]])



Bar-Ilan University
Dept. of Computer Science

 Dec*s(c*)= LSB(c)  LSB([[ Si siyi ]])

 Use grade-school addition
to compute b

1 1 … 0 1

0 1 … 1 1

1 0 … 1 0

… … … …

0 0 … 0 1
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x st

s1 s1 … 0 s1

0 s2 … s2 s2

s3 0 … s3 0

… … … …

0 0 … 0 st

b
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 Dec*s(c*)= LSB(c)  LSB([[ Si siyi ]])

 Grade-school addition

◦ What is the degree of b(s1,…,st)?

The ai„s in binary: 
each ai,j is either si or 0

ai  [0,2)

b{0,1}

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b
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c1,0 c1,-1 … c1,1-p

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

Carry Bits

b-p

Result Bit

c1,0c1,-1 … c1,1-p b-p

= HammingWeight(Column-p)

mod 2p+1
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c2,0 c2,-1 …

c1,0 c1,-1 … c1,1-p

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b-pb1-p

c2,0c2,-1 … c2,2-p b1-p

= HammingWeight(Column1-p) 

mod 2p
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cp,0

… …

c2,0 c2,-1 …

c1,0 c1,-1 … c1,1-p

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b-pb1-pb-1
…

cp,0b-1 =

HammingWgt(Col-1) 

mod 4
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cp,0

… …

c2,0 c2,-1 …

c1,0 c1,-1 … c1,1-p

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b-pb1-pb-1
…b

 Express ci,j’s
as polynomials 
in the ai,j’s
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 Binary Vector x = (x1, …, xu){0,1}u

 ek(x) = deg-k elementary symmetric polynomial

◦ Sum of all products of k bits  (u-choose-k terms)

 Dynamic programming to evaluate in time O(ku)

◦ ei(x1…xj) = ei-1(x1…xj-1)xj + ei(x1…xj-1)  (for ij)

Secure Computation and Efficiency
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L x1 x1,x2 … x1…xu-1 x1…xu

e0 1 1 1 1 1

e1 0

… ei(x1…xj)

ek 0
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Thm: For a vector x = (x1, …, xu){0,1}u, 
i‟th bit of W=HW(x) is e2i(x) mod 2

◦ Observe e2i(x) = (W choose 2i)

◦ Need to show: i‟th bit of W=(W choose 2i) mod 2

 Say 2k  W<2k+1 (bit k is MSB of W), W‟=W-2k

◦ For i<k, (W choose 2i)=(W‟ choose 2i)      mod 2

◦ For i=k, (W choose 2k)=(W‟ choose 2k)+1 mod 2

 Then by induction over W

◦ Clearly holds for W=0

◦ By above, if holds for W‟=W-2k

then holds also for W
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 Use identity (*)

◦ For r=0 or r=2k we have (2k choose r) = 1

◦ For 0<r<2k we have (2k choose r) = 0 mod 2

 i<k: The only  nonzero term
in (*) is j=2i

 i=k: The only nonzero terms
in (*) are j=0 and j=2k
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c3,0 c3,-1

c2,0 c2,-1 c2,-2

c1,0 c1,-1 c1,-2 c1,-3

a1,0 a1,-1 a1,-2 a1,-3 a1,-4

a2,0 a2,-1 a2,-2 a2,-3 a2,-4

… … … … …

at,0 at,-1 at,-2 at,-3 at,-4

b
Goal:
compute the degree of 
the polynomial b(ai,j‟s)

Carry Bits

Input Bits
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deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

e16(…)      e8(…) e4(…)      e2(…)
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deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

e8(…) e4(…) e2(…)
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deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

e4(…) e2(…) 
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deg=9 deg=7

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

e2(…)  
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deg=9 deg=7

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1

deg=1 deg=1 deg=1 deg=1 deg=1

… … … … …

deg=1 deg=1 deg=1 deg=1 deg=1

bdeg( ) = 16

Claim: with p bits of precision,
deg( b(ai,j) )  2p
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 Dec*s(c*)= LSB(c)  LSB([[ Si siyi ]])

 degree(b) = 2p

◦ We can only handle degree ~ n

◦ Need to work with low precision,
p ~ log n

The ai„s in binary: 
each ai,j is either si or 0

ai  [0,2]

b{0,1}

a1,0 a1,-1 … a1,1-p a1,-p

a2,0 a2,-1 … a2,1-p a2,-p

a3,0 a3,-1 … a3,1-p a3,-p

… … … …

at,0 at,-1 … at,1-p at,-p

b
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 Current parameters ensure “noise” < p/2

◦ For degree-2n polynomials with < 2n terms (say)

◦ With |r|=n, need |p|~3n2

 What if we want a somewhat smaller noise?

◦ Say that we want the noise to be < p/2n

◦ Instead of |p|~3n2, set |p|~3n2+log n

 Makes essentially no difference

Claim: c has noise < p/2n
& sparse subset size  n-1

 enough to keep precision 
of log n bits for the yi‟s

58
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Claim: |S|  n-1 & c/p within 1/2n from integer
 enough to keep log n bits for the yi‟s

Proof: fi = rounding of yi to log n bits 

◦ |fi - yi|  1/2n  sifi =   siYi if si0

siYi  1/2n if si1

|Ssifi - SsiYi|  |S|/2n  (n-1)/2n

 SsiYi=c/p, within 1/2n of an integer

Ssifi within 1/2n+(n-1)/2n=1/2
of the same integer

 [[Ssifi]] = [[SsiYi]]               QED
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 Dec*s(c*)= LSB(c)  LSB([[ Si sifi ]])

 degree( Dec*
c*(s) )  n

 degree( Mc1*c2*(s) )  2n

 Our scheme can do this!!!

a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

… … … …

at,0 at,-1 … at,-log n

The ai„s in binary: 
each ai,j is either si or 0

ai  [0,2]

b
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 Add to public key  d1,d2, …, dt  [0,2) 
◦  sparse S for which SiS di = 1/p mod 2

 New secret key is (s1,…,st), char. vector of S

 Also add to public key ui = Enc(si), i=1,2,…,t

 Hopefully, scheme remains secure

◦ Security with di‟s relies on hardness of 
“sparse subset sum”

 Same arguments of hardness as for
the approximate-GCD problem

◦ Security with ui‟s relies on “circular 
security” (just praying, really)
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 To “multiply” c1, c2 (both with noise < p/2n)

◦ Evaluate Mc1,c2(*) on the ciphertexts u1,u2,…,ut

◦ This is a degree-2n polynomial

◦ Result is new c, with noise <p/2n

◦ Can keep computing on it

 Same thing for “adding” c1, c2

 Can evaluate any function
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 May want evaluated ciphertexts to have the 
same distribution as freshly encrypted ones 
◦ Currently they have more noise

 To do this,  make p larger by n bits
◦ “Raw evaluated ciphertext” have noise < p/2n

 After encryption/evaluation, add noise ~ p/2n
◦ Note: DOES NOT add noise to Enc(s) in public key 

 Evaluated, fresh ciphertexts
now have the same noise
◦ Can show that distributions are

statistically close
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 Constructed a fully-homomorphic (public 
key) encryption scheme

 Underlying somewhat-homomorphic scheme 
relies on hardness of approximate-GCD

 Resulting scheme relies also on hardness 
of sparse-subset-sum and circular security

 Ciphertext size is ~ n5 bits

 Public key has ~ n10 bits

◦ Doesn‟t quite fit the “efficient”
title of the winter school…
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