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What is it? "Q

Bar-llan University
Dept. of Computer Science

» Homomorphic encryption: Can evaluate some
functions on encrypted data

> E.g., from Enc(x), Enc(y) compute Enc(x+y)

» Fully-homomorphic encryption: Can evaluate
any function on encrypted data

- E.g., from Enc(x), Enc(y) compute Enc(x3y-y’+xy)
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Motivating Application: @
Simple Keyword Search ey
» Storing an encrypted file F on a remote server

» Later send keyword w to server, get answer,
determine whether F contains w
> Trivially: server returns the entire encrypted file
- We want: answer length independent of |F]

Claim: to do this, sufficient to evaluate
low-degree polynomials on encrypted data

- degree ~ security parameter

Secure Comput
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Protocol for keywork-search Ny

Bar-llan University
Dept. of Computer Science

» File is encrypted bit by bit, E(F,) ... E(F,)
» Word has s bits w,w,...w,

» Fori=1,2,...,t-s+1, server computes the bit
C = H(1+w +F, ;) mod 2

e —1 |fw F.F......F..._; (wfound in position i) else ¢,=0
> Each ¢; is a degree-s polynomial in the F;’s
+ Trick from [Smolansky’93] to get degree—n polynomials,

error—probability 2-"
» Return n random subset-sums
of the ¢;’s (mod 2) to client
St|II degree-n, another 27" error

Secure Comput"“ ‘\‘\C =ffici
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Computing low-degree ,\9
polynomials on ciphertexts

Dept. of Computer Science

» Want an encryption scheme (Gen, Enc, Dec)
> Say, symmetric bit-by-bit encryption
- Semantically secure, E(0)~E(1)

» Another procedure: C*=Eval(f, C,,...C)

> f is a binary polynomial in t variables, degree<n
- Represented as arithmetic circuit

- The C;’s are ciphertexts
» For any such f, and any C;=Enc(x;) it holds that

Dec( Eval(f, C,,...C) ) = f(Xq,...,Xy)

- Also |Eval(f,...)| does not depend
on the “size” of f (i.e., # of vars
or # of monomials, circuit-size)

- That’s called “compactness”

Secure Computation and Ef
Bar-llan Universi ty, Israel



A Simple SHE Scheme Ny

Bar-llan University
Dept. of Computer Science

» Shared secret key: odd number p
» To encrypt a bit m:

- Choose at random small r, large g .
Noise much
- Qutput c =pq + 2r + m smaller than p

- Ciphertext is close to a multiple of p
- m = LSB of distance to nearest multiple of p

» To decrypt c:

> Qutput m = (c mod p) mod 2
= c-p-llc/pll mod 2
= ¢ - [[c/p]]l mod 2
LSB(c) XOR LSB([[c/pl]D)

[[c/p]l is rounding
of the rational c/p
to nearest integer




Why is this homomorphic? Ny

Bar-llan University
Dept. of Computer Science

» Basically because:

> |If you add or multiply two near-multiples
of p, you get another near multiple of p...

Secure Computation and E
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Why is this homomorphic? Ny

Bar-llan University
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» Ci=q,p+2r,+m,, C,=q,p+2r,+m,

» C1+C, = (q;+9,)p + 2(r;+r,) + (M;+m,)
o 2(ry+ry)+(m;+m,) still much smaller than p
2C,+C, mod p = 2(r;+r,) + (m;+m,)

» €1 X €, = (€,9,+09,C,-0,9,P)P
+ 2(2r;r,4+rim,+m,r,) + mym,

> 2(2r ry+...) still smaller than p
=2>C,XC, mod p = 2(2r,r,+...)+mym,

Secure Computag : ,_\"iciency
Bar-Ilan University, Israel 2011



Why is this homomorphic? Ny

Bar-llan University
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» Cy=qp+2r,+my, ..., C;=qp+2r.+m,

» Let f be a multivariate poly with integer
coefficients (sequence of +’s and x’s)

» Let ¢ = Eval(f, ¢,, ..., ¢) = f(cy, ..., C)

o f(cy, ..., ¢) = f(m,+2r,, ..., m+2r) +gp
=f(m,, ..., m) +2r +qp

= (¢ mod p) mod 2 = f(m,, ..., m)

That’s what we want!
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How homomorphic is this? Ny
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» Can keep adding and multiplying until the
“noise term” grows larger than p/2

- Noise doubles on addition, squares on multiplication
> Initial noise of size ~ 2"

- Multiplying d ciphertexts = noise of size ~2dn
» We chooser ~ 21, p ~ 2" (and q ~ 2%)

- Can compute polynomials of
degree ~n before the noise grows
too large
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Keeping it small Ny

Bar-llan University
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» Ciphertext size grows with degree of f
> Also (slowly) with # of terms

» Instead, publish one “noiseless integer’” N=pq

> For symmetric encryption, include N with the
secret key and with every ciphertext

> For technical reasons: q is odd, the g;’s
are chosen from [q] rather than from [2"]

» Ciphertext arithmetic mod N

= Ciphertext-size remains
always the same
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Aside: Public Key Encryption Ny

Bar-llan University
Dept. of Computer Science

Rothblum’11: Any homomorphic and compact
symmetric encryption (wrt class C including
linear functions), can be turned into public key

> Still homomorphic and compact wrt essentially the
same class of functions C

» Public key: t random bits m=(m,...m,) and
their symmetric encryption ¢,=Enc, (m;)
> t larger than size of evaluated ciphertext

» NewEnc,, (b): Choose random s
s.t. <s, m> b, use Eval to get
c*= Encsk(<s m>)

: Note that s 2 c* is shrinking

Used to prove
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Security of our Scheme )

Bar-llan University
Dept. of Computer Science

» The approximate-GCD problem:
° Input: integers wy, wy,..., W,
- Chosen as wy=qup, W;=q;p + ; (p and q, are odd)
- peglO,P], g;€4[0,Q], r,e4[0,R] (with R << P << Q)
- Task: find p
» Thm: If we can distinguish Enc(0)/Enc(1) for
some p, then we can find that p
- Roughly: the LSB of r; is a “hard core bit”

= If approx-GCD is hard then
scheme is secure

» (Later: Is approx-GCD hard?)

Secure Computation
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Hard-core-bit theorem '\Q

Bar-llan University
Dept. of Computer Science

A. The approximate-GCD problem:

> Input: wy=qop, {w;=q;p+r;}
¢ p€$[O,P], qi€$[O,Q], ri€$[O,R] (W|th R << P << Q)

* Task: flnd P labeled examples
B. The cryptosystem

> Input: : N=qgp, {m;, ¢;=q;p+2p;+m;}, c=qp+2p+m
* peglO,P], g;€4[0,Q], p;es[O,R’] (with R’ << P << Q)
- Task: distinguish m=0 from m=1

Thm: Solving B =& solving A

- small caveat: R smaller than R’
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Proof outline '\Q

Bar-llan University
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» Input: wo=qep, {W; = q;p + i}

» Use the w;’s to form the ¢;’s and ¢

» Amplify the distinguishing advantage
> From any noticeable ¢ to almost 1
> This is where we need R’>R

» Use reliable distinguisher to learn q,
> Using the binary GCD procedure

» Finally p = wy/q,

16
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From {w;} to {c;, LSB(r))} N

Bar-llan University
Dept. of Computer Science

» We have w;=q;p+r;, heed x;=q,"p+2p,

> Then we can add the LSBs to get ¢; = x; + m;
» Set N=w,, X;=2w; mod N

> Actually x;=2(w,+p;) mod N with p, random < R’
» Correctness:

- The multipliers q;, noise r;,, behave independently
- As long as noise remain below p/2

> Ii+p; distributed almost as p,
- R’>R by a super-polynomial factor

> 2xq; mod qq is random in [q]

17




Amplify distinguishing advantage Ny

Bar-llan University
Dept. of Computer Science

» Given any integer z=qgp+r, with r<R:
Set ¢ = [z+ m+2(p + subsetSum{w,})] mod N
> For random p<R’, random bit m
» For every z (with small noise), c is a nearly
random ciphertext for m+LSB(r)
> subsetSum(q,’s) mod q, almost uniform in [q,]
> subsetSum(r;’s)+p distributed almost identically to p

» For every z=qp+r, generate
random ciphertexts for bits
related to LSB(r)

18
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Amplify distinguishing advantage Ny

Bar-llan University
Dept. of Computer Science

» Given any integer z=qgp+r, with r<R:
Set ¢ = [z+ m+2(p + subsetSum{w,})] mod N
> For random p<R’, random bit m

» For every z (with small noise), c is a nearly
random ciphertext for m+LSB(r)
- A guess for c mod p mod 2 = vote for r mod 2

» Choose many random c’s, take majority

Noticeable advantage for random c’s
= Reliably computing r mod 2
for every z with small noise

19




Reliable distinguisher @

= The Binary GCD Algorithm s

Dept. of Computer Science

» From any z=qgp+r (r<R’) can get r mod 2
- Note: z = g+r mod 2 (since p is odd)
> So (g mod 2) = (r mod 2) ® (z mod 2)

» Given z,, z,, both near multiples of
(- Get b, := q, mod 2, if z,<z, swap th
© If b]:bzz], set Z]::Z]_Zz, b]:b]_b

zZ=02s)p +r

= z/2=sp+r/2
= floor(z/2) =
sp+floor(r/2)

- hew-(; = old-q;/2
- Repeat until one z; is zero,

output the other
\ e

Binary-GCD
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Binary GCD example (p=19) Ny

Bar-llan University
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Z, =54 =3x19 -3 (b,=1)

°© 2, =2-2, =45 =2x19+ 7 (b,"=0)

z,"=floor(z,’/2) =22 = 1x19 + 3
»Z; = 54 = 3x19 -3 (b,=1)
Z,=22=1x19 + 3 (b,=1)

© 2, =2,-2, =32 =2x19-6 (b,’=0)

z,’=2,/2 =16 =1x19 -3

» 2, =22 =1x19 + 3 (b,=1)
z, =16 =1x19 -3 (b,=1)

°© 2, =2,-2, =6 =0x19 + 6




Binary GCD example (p=19) Ny

Bar-llan University
Dept. of Computer Science

» 2, =16 =1x19 -3 (b,=1)
z,= 3 =0x19 + 3 (b,=0)
>z, = floor(z,/2) =1 =0x19 + 1
» 2, =16=1x19 -3 (b,=1)
z, =1 =0x19 + 1 (b,=0)

> 2, = floor(z,/2) =0
» Output 16 = 1x19 -3

> Indeed 1=GCD(5,3)

22




The Binary GCD Algorithm Ny

Bar-llan University
Dept. of Computer Science

» Z;=q;p+r;, i=1,2, 2’:=0urBinaryGCD(z,,z,)
- Then 2’ = GCDX(q,,9,)-p + I
> For random q,q’\ Pr[GCD(q,q’)=1] ~ 0.6

The odd part
of the GCD

23
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Binary GCD = learning q,,p )

Bar-llan University
Dept. of Computer Science

» Try (say) z’:= OurBinaryGCD(w,,w;)
- Hope that z’=1-p+r
- Else try again with OurBinaryGCD(z’,w,), etc.
» One you have z’=1:p+r,
run OurBinaryGCD(w,,Z’)

- GCD(qg,1)=1, but the b, bits along the way
spell out the binary representation of q,

» Once you learn q,, p=W,/q,

QED

24
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Where we are N

Bar-llan University
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» We proved: If approximate-GCD is hard
then the scheme is secure

» Next: is approximate-GCD really hard?

25
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Is Approximate-GCD Hard? N

Bar-llan University
Dept. of Computer Science

» Several lattice-based approaches for solving
approximate-GCD

- Approximate-GCD is related to Simultaneous
Diophantine Approximation (SDA)

- Can use Lagarias’es algorithm to attack it
> Studied in [Hawgrave-GrahamO1]
- We considered some extensions of his attacks

» These attacks run out of steam
when |q;|>|p|?
> In our case |p|~n2, |g;|~n® >> |p|?

26




Lagarias’es SDA algorithm Ny

Bar-llan University
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» Consider the rows of this matrix B:

> They span dim-(t+1) lattice
» (dg,97,---,qy) % B is short @_V\\:\} W oo W
> 1st entry: qoR < Q-R B= 2WO
> it entry (i>1): qo(a;p+r)-a;i(deP) =0,
- Less than Q:R in absolute value \_ —w

= Total size less than Q-R-vt
- vs. size ~Q-P (or more) for basis vectors

» Hopefully we can find it with
a lattice-reduction algorithm
(LLL or variants)

27




Will this algorithm succeed? Ny

Bar-llan University
Dept. of Computer Science

» Is (dg,95,---,4¢) X B the shortest in the lattice?

> |Is it shorter than vt-det(B)!/t+! ?{i“kows“ b@

- det(B) is small-ish (due to R in the corner) - ~
Rw; w,...w,
> Need ((QP)IR)!/+1 > QR ~w,
< t+1 > (logQ + logP-1logR) / (log P -1log R) ~Wo
~ log Q/log P W,
» log Q = o(log?P) = need t=w(log P) - ~/

» Quality of LLL & co. degrades with t

> Find vectors of size ~ 2¢t.shortest
- t=w(log P) = 2¢.QR > det(B)'/t*]

- Contemporary lattice reduction
not strong enough

28
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Why this algorithm fails

size (log scale)
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Bar-llan University

log Q

~_«1What LLL can find

min( purple)+et

™

the solution we
are seeking

auxiliary solutions
(Minkowski)

converges to ~ logQ+logP

1 blue line
remains above
purple line —

logQ/logP
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Conclusions for Part | '\Q

Bar-llan University
Dept. of Computer Science

» A Simple Scheme that supports computing
low-degree polynomials on encrypted data

- Any fixed polynomial degree can be done

- To get degree-d, ciphertext size must be o(nd?)
» Already can be used in applications

> E.g., the keyword-match example

» Next we turn it into a
fully-homomorphic scheme

30
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Bootstrapping [Gentry 09] N

Bar-llan University
Dept. of Computer Science

» So far, can evaluate low-degree polynomials

32
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Bootstrapping [Gentry 09] Ny

Bar-llan University
Dept. of Computer Science

» So far, can evaluate low-degree polynomials

» Can eval

» Butlyis “evaluated ciphertext”

> Can still

o But eval- has too much noise

Y=T(X1,X50¢0,X},)

when [x{s are “fresh”

be decrypted

Secure COmputatis ) \ “, \
Bar-llan Univer%i_"
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Bootstrapping [Gentry 09] Ny

Bar-llan University
Dept. of Computer Science

» So far, can evaluate low-degree polynomials

» Bootstrapping to handle higher degrees:
» For a ciphertext c, consider D_(sk) = Dec(c)

- Hope: D.(*) has a low degree in sk
- Then so are

Ac, c,(sk) = Dec(c,) + Decgyl(c,)
and Mgc,c,(sk) = Decg(c,) x Decgl(c,)

34
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Bootstrapping [Gentry 09] Ny

Bar-llan University
Dept. of Computer Science

» Include in the public key also Enc,(sk)

Requires
“circular
security”

sk, ¢

5/(2 Mq,cz(S/()

= Dec (q) x Dec,(G) = x; X X,

sk,

» Homomorphic computation
applied only to the “fresh”
encryption of sk

35
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Bootstrapping [Gentry 09] Ny

Bar-llan University
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» Fix a scheme (Gen, Enc, Dec, Eval)
» For a class F of functions , denote
0 = { Eval(f, ¢,;,...,c) : f e £, ¢, € Enc(0/1) }
- Encrypt some t bits and evaluate on them some feF

» Scheme bootstrappable if exists F for which:
- Eval “works” for F
- V f e £ ¢ e Enc(x;), Dec( Eval(f,c,,...,c) ) = f(x4,...,%xp)
> Decryption + add/mult in F
* V C,Ce Cry Acic(SK), Mc,c,(sk) € F

Thm: Circular secure

& Boostrappable
= Homomorphic for any func.

36
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Is our SHE Bootstrappable? N

Bar-llan University
Dept. of Computer Science

» Dec,(c) = LSB(c) & LSB([[c/pIF
nearest integer

» Naively computing [[c/p]] takes degree >n>
» Our scheme only supports degree ~ n

» Need to “squash the decryption circuit”
in order to get a bootstrappable scheme

> Similar techniques to [Gentry 09]

37
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How to“Simplify” Decryption? Ny

Bar-llan University
Dept. of Computer Science

» Add to public key another “hint” about sk
> Hint should not break secrecy of encryption

» With hint, ciphertext can be publically
post-processed, leaving less work for Dec

» ldea is used in server-aided cryptography.

m
)

Old

decryption

algorithm

T ™M
C sk

38
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How to“simplify” decryption? N

Bar-llan University
Dept. of Computer Science

Old
decryption
algorithm Processed ] Dec’ approach
cnphertext
- T TTT T
1 T met in pub key lets A
anyone post-process
the ciphertext, leaving
dess work for Dec” y
TTTT MMt
T TTk ™ f(sk, r)
C S
The hint Y
about sk in
\publlc key )
Secure Computation and Efficiency 39
Bar-llan University, Israel 2011




The New Scheme N

Bar-llan University
Dept. of Computer Science

» Old secret key is the integer p
» Add to public key many “real numbers”
> d,,d,, ..., d, € [0,2) (with precision of ~|c| bits)
- 3 sparse S for which X, _c d, = 1/p mod 2
» Post Processing: y,;=c x d. mod 2, i=1,...,t
> New ciphertext is c* = (C, y;, V>,..., V)
» New secret key is char. vector of S (5,,...,06,)

- o;=1 if ieS, 0,=0 otherwise
o ¢c/p =X od)=Z o;¥; mod 2

Dec*(c*) = ¢ - [[Z; 5;¥.]] mod 2
. 20
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The New Scheme '}-y

Bar-llan University
Dept. of Computer Science

» Dec*_(c*)= LSB(c) @ LSB([[ =; o;w; 1])

LIJ]_ 0 LP].,-]. LIJ]_,]__p \IJ]-,'D X G'l
Yoo Yo .. Youip Y, XoO,

VY30 Y34 Y51 Y3, X O3
‘Pt 0 ‘Pt,-l LIlt 1-p LIJt,-p X cTt
LSB([[ZiGi\I/i]])
41
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The New Scheme '\Q

Bar-llan University
Dept. of Computer Science

» Dec*_(c*)= LSB(c) @ LSB([[ =; o;w; 1])

©1 ©1 0 ©1 X oy
0 G> G5 c, X o,
03 0 . 03 0 X 63
0 0 0 o X G,

» Use grade-school addition
to compute b

42
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How to Add Numbers? '\Q

bAE{O,-I } DepEac:f-I(I‘lﬁ:aT::rr;iz;,ence
[ \
% (%) —
» Dec*_(c*)= LSB(c) @ LSB([[ = o;w; 1])
\ai e [0,2)
allo a1,_1 nan alll_p all_p
d ad- _ d- 1_ d- _ : .
2,0 2,-1 2/1-p 2P The as in binary:
d3o d3 -1 ..« d31p d3 g each a;;is either s; or 0
atlo ° at’_l atll_p at,_p )

» Grade-school addition
- What is the degree of b(c,...,6.)?

43
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Grade School Addition '\Q

Bar-llan University
Dept. of Computer Science

S

dio 911 dy1-p  91,-p
dyo dy g ds1p 92 p
d3o d3 .1 d31.p 93p

atlo s at'_l atll_p ) Result Bit

C10C1 -1+ C11-p Dy
= HammingWeight(Column_,)
mod 2pr+1

44
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Grade School Addition '\Q

Bar-llan University

2_()

Cl,O C1,_1 Cl,l-p

dio0 911 -+ Ay1.p 91 p
a2’0 a2’_1 L a2,1_p a2’_p
a3’0 a3’_1 " a3,1_p a3’_p
A0 o 91 - Grap  Grop

by

C2,0C2,-1 -+ C2,2-p D1-p
= HammingWeight(Column,_,)
mod 2P

45
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Grade School Addition

Secure Computatio
Bar-llan University

Co -1

Ci,-1 Ci,1-p

di,-1 di1,1-p  91,p

a2l-1 azll_p azl-p

ds 1 d31.p 93 .p
d¢ -p

b_p

46
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c:p,Ob-l =
HammingWgt(Col_,)
mod 4




Grade School Addition '\Q

Bar-llan University
Dept. of Computer Science

Cp,0

» EXpress ¢;i's
as polynomials
in the a, ;'s




Small Detour: Elementary .\@
Symmetric Polynomials

» Binary Vector x = (X4, ..., X,)e{0,1}
» ,(x) = deg-k elementary symmetric polynomial
- Sum of all products of k bits (u-choose-k terms)

» Dynamic programming to evaluate in time O(ku)
° €i(Xq...%)) = €;_1(Xq...X_1)X; + €(X;...X_1) (for <))

Secure Computa



The Hamming Weight Ny

Bar-llan University
Dept. of Computer Science

Thm: For a vector x = (X;, ..., X,)e{0,1}Y,
i’th bit of W=HW(X) is e,i(x) mod 2
- Observe ez(x) = (W choose 2)
- Need to show: i’th bit of W=(W choose 2') mod 2
» Say 2k < W<2k+1 (bit k is MSB of W), W =W-2k
- For i<k, (W choose 2")=(W’ choose 2/) mod 2
- For i=k, (W choose 2X)=(W’ choose 2X)+1 mod 2

» Then by induction over W
> Clearly holds for W=0

- By above, if holds for W =W-2k
then holds also for W

49




The Hamming Weight Ny

W) (w24 2*
» Use identity | o ‘JZ_(; j 2 _j (*)

Dept. of Computer Science
> For r=0 or r=2% we have (2X choose r) = 1

> For 0<r<2k we have (2 choose r) = 0 mod 2

e | (2 2@ -0 @ —rep [
than denominator r o r (I’—l) 1 :(r_lj
» i<k: The only nonzero term
in () is j=2!

» i=k: The only nonzero terms
in (*) are j=0 and j=2k




Back to Grade School Addition '\Q

\ Bar-llan University
Dept. of C ter Sci
C4’0 ept. o omputer science
C Cs 4
3,0 3 ’ Carry Bits
Coo Co -1 Co -2
Cio Ci-1 Ci,-2 Ci,-3 )
/
di1,0 a1 a2 a3 dj,-4
a0 dz,-1 d3,-2 d3,-3 d2,-4 > Input Bits
At -1 dt,-2 dt,-3 At -4
4 )
Goal:

compute the degree of
the polynomial b(a;;’s)
g J

51
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Back to Grade School Addition '\Q

Bar-llan University
Dept. of Computer Science

e6(...)  egll.) eut.)  es(..))
deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1

deg=1.deg=1 deg=1 deg=1 deg=1

52
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Back to Grade School Addition '\Q

Bar-llan University
Dept. of Computer Science

eg(...) e, (...) e,(...)

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1

deg=1.deg=1 deg=1 deg=1 deg=1

53

Secure Computation
Bar-llan University,



Back to Grade School Addition "Q

Bar-llan University
Dept. of Computer Science

e,(...) e,(...)

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1

deg=1.deg=1 deg=1 deg=1 deg=1

54




Back to Grade School Addition

e,(...)

g_(_ellen,:e
& ’

'éb })
=

3 '

I3

-

-

Bar-llan University
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deg=9 deg=7/

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 1 deg=1 deg=1 deg=1 deg=1
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Back to Grade School Addition

g_(_ellence

s ’:
'E? })
=
¥ |
&

-

-

Bar-llan University
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deg=15

deg=9 deg=7/

deg=9 deg=5 deg=3

deg=16 deg=8 deg=4 deg=2

deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1
deg=1 deg=1 deg=1 deg=1 deg=1

deg(-)— 16

Claim: with p bits of precision,

deg( b(a;) ) < 2P
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Our Decryption Algorithm N

bAE{O,-I } DepEac:f-I(I‘ll:nl:aT::rr;iz;,ence
( \
* (%) —
» Dec*_(c*)= LSB(c) @ LSB([[ = o;w; 1])
\ai & [0,2]
aLO all_l alll_p all_p
d>g Ay 4 - -
’ ’ P P The a;'s in binary:
930 931 - d31p I3 each a; is either o; or 0
at’O ° at’_l atll_p at'_p )

» degree(b) = 2P
- We can only handle degree ~ n

- Need to work with low precision,
p~logn
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Lowering the Precision Ny
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» Current parameters ensure “noise” < p/2
> For degree-2n polynomials with < 2" terms (say)
> With |r|=n, need |p|~3n?

» What if we want a somewhat smaller noise?
> Say that we want the noise to be < p/2n

> Instead of |p|~3n?, set |p|~3n?+log n
- Makes essentially no difference

Claim: c has noise < p/2n
& sparse subset size < n-1
= enough to keep precision
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Lowering the Precision Ny
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Claim: |S| < n-1 & ¢/p within 1/2n from integer
= enough to keep log n bits for the y,’s

Proof: ¢, = rounding of v, to log n bits

© |(I)| - \|]|| < ]/Zn -> Gi(l)i :{quji |f Gi:()

2 |Zod - Zo;¥,| < [S]/2n < (n-T1)/2n
» Zo;W;=c/p, within 1/2n of an integer

>Xo;¢p within 1/2n+(n-1)/2n=1/2
of the same integer

-> [[ZGi(I)i]] = [[ZGi\Pi]] QED
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Bootstrappable, at last N
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» Dec*,(c*)= LSB(c) ® LSB(L 2, o 1)

A a, € [0,2
allo a1,_1 . a]_,-log n | € [ ) ]
as o az,-1 d2,-log n -
. 5 - > The a;'s in binary:
3,0 3,-1 S-lag each a;;is either c; or 0
d; o di 1 At,-logn__J

» degree( Dec’.«(c) ) < n
= degree( Mc,*c,*(c) ) < 2n

Our scheme can do this!!!
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Putting Things Together Ny
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. Add to public key d,,d,, ..., d,  [0,2)
- 3 sparse S for which £, _.d. = 1/p mod 2

» New secret key is (o,...,0,), char. vector of S
» Also add to public key u; = Enc(sy), i=1,2,...,t
» Hopefully, scheme remains secure

> Security with d.’s relies on hardness of
“sparse subset sum”

- Same arguments of hardness as for
the approximate-GCD problem

> Security with u;’s relies on “circular
security” (just praying, really)

61




Computing on Ciphertexts Ny
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» To “multiply” ¢,, ¢, (both with noise < p/2n)
> Evaluate Mc,,c,(*) on the ciphertexts u,,u,,...,u,
> This is a degree-2n polynomial
- Result is new ¢, with noise <p/2n
- Can keep computing on it
» Same thing for “adding” ¢, ¢,
» Can evaluate any function
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Ciphertext Distribution A

Bar-llan University
Dept. of Computer Science

» May want evaluated ciphertexts to have the
same distribution as freshly encrypted ones

> Currently they have more noise

» To do this, make p larger by n bits
- “Raw evaluated ciphertext” have noise < p/2"

» After encryption/evaluation, add noise ~ p/2n
> Note: DOES NOT add noise to Enc(c) in public key

» Evaluated, fresh ciphertexts
now have the same noise

> Can show that distributions are
statistically close
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Conclusions N
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» Constructed a fully-homomorphic (public
key) encryption scheme

» Underlying somewhat-homomorphic scheme
relies on hardness of approximate-GCD

» Resulting scheme relies also on hardness
of sparse-subset-sum and circular security

» Ciphertext size is ~ n> bits

» Public key has ~ n'0 bits

- Doesn’t quite fit the “efficient”
title of the winter school...
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More Questions?
»
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