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Abstract. We investigate a new notion of security for “cryptographic
functions” that we term seed incompressibility (SI). We argue that this
notion captures some of the intuition for the alleged security of construc-
tions in the random-oracle model, and indeed we show that seed incom-
pressibility suffices for some applications of the random oracle methodol-
ogy. Very roughly, a function family fs(·) with |s| = n is seed incompress-
ible if given (say) n/2 bits of advice (that can depend on the seed s) and
an oracle access to fs(·), an adversary cannot “break fs(·)” any better
than given only oracle access to fs(·) and no advice.
The strength of this notion depends on what we mean by “breaking
fs(·)”. We first show that for any family fs there exists an adversary that
can distinguish fs(·) from a random function using n/2 bits of advice, so
seed incompressible pseudo-random functions do not exist. Then we con-
sider the weaker notion of seed-incompressible correlation intractability.
We show that although the negative results can be partially extended
also to this weaker notion, they cannot rule it out altogether. More im-
portantly, the settings that we cannot rule out still suffice for many
applications. In particular, we show that they suffice for constructing
collision-resistant hash functions and for removing interaction from Σ-
protocols (3-round honest verifier zero-knowledge protocols).

1 Introduction

Identifying useful security notions of “cryptographic functions” was proposed
ten years ago by Canetti [4], as a plausible way of putting random-oracle-based
constructions on a firmer theoretical footing. The challenge is to find specific
“random-oracle-like” properties, such that functions with these properties (a)
can be realized in the standard model and (b) can be securely used in some
cryptographic applications in lieu of access to a truly random function. However,
very little progress along this line has been made since then, in fact the only non-
obvious notion along this line that we know of is the “perfect one-way hashing”
notion of Canetti [4, 7].

In this work we study a very different security notion that we term seed in-
compressibility. On a very high level, this notion is meant to capture the intuition
that a random function has no structure. At a first glance, it seems hopeless to
define an efficiently computable function that has no structure, since the fact
that the function is computed by a small circuit is itself some structure. However,



we may still hope that this small circuit is the only interesting “small property”
of the function. That is, no adversary can find a significantly smaller property
that differentiates it from your average random function. Roughly, if you do not
get enough bits to describe the entire function, then you get nothing.

Toward formalizing this intuition, let F = {fs}s be a family of functions with
n-bit seeds, and consider an adversary that works in two phases: In the first phase
the adversary gets the n-bit seed s, compresses it to (say) an n/2-bit string σ, and
keeps only σ in memory. Then the adversary gets an oracle access to the function
fs(·), and it tries to “break it” (according to some notion of security). We call
this the seed compression attack model. We say that the family F satisfies the
underlying notion of security under seed-compression attack (or that it is seed
incompressible with respect to the underlying notion of security), if breaking the
function knowing σ is not any easier than breaking it without knowing σ.4

The choice of n/2 as the compression threshold is quite arbitrary. The results
that we present in this paper remain unchanged whenever the threshold for the
length of the compressed seed is anywhere from nε to n − nε for any fixed
0 < ε < 1. Below we stick to the n/2 threshold for convenience.

Following the intuition from above, we would have liked a construction where
it is not possible to distinguish fs from a random function, even given σ. Some
care must be taken when defining this notion to avoid obvious pitfalls (such as
σ being the first n/2 bits of fs(0)), but this can be handled using ideas similar
to the ones of Coron et al. [9] (see details in Section 3). Unfortunately, even
with these ideas we show that the resulting notion cannot be realized, namely no
function family can be pseudo-random under seed-compression attacks. Roughly,
the reason is that the adversary can encode in σ a CS-proof [21] for the statement
that fs is computed by a small circuit. This impossibility result is somewhat
disheartening, as it does not really show the existence of some property of the
function that is smaller than its description; rather, it is simply a fact that
convincing someone that a function has a small circuit takes much fewer bits than
actually telling them what the circuit is. Further, from a security perspective the
fact that the function is being computed by a small circuit is clearly information
that the adversary knows.

Faced with this negative result, we investigate weaker notions of security. One
direction that seems promising is the notion of correlation-intractability under
seed-compression attacks. The notion of correlation-intractability was defined by
Canetti et al. [6] as the inability of the attacker to find any input x such that
the pair (x, fs(x)) satisfies any “non-trivial relation” (cf. Section 4). Canetti et
al. proved that correlation-intractability is not realizable when the adversary
sees the entire seed s, but we point out that it may be realizable when the
adversary is only given the “compressed seed” σ. We note that the negative
results from [6] do not seem to extend to this model. On the other hand, our
negative results for PRFs can be partially extended also to this weaker notion.
However, it seems that these negative results hit an inherent limitation for some

4 Of course, this is only meaningful if “breaking fs” is hard without any knowledge of
the seed s.



parameter settings, and we show in Section 4 that the remaining parameter
settings are still useful. For example, we show that we can use them to construct
collision-resistant hash functions, and perhaps more interestingly that we can
use them to remove interaction from three-move public-coin honest-verifier zero-
knowledge proofs.

Briefly, the primitives that can be constructed from seed-incompressible func-
tions are those for which a “break” can be encoded with only a few bits. (For
example, one can encode a collision in a hash function using only two inputs
to the function.) When constructing such primitives from seed-incompressible
functions, we let the seed of the function be sufficiently longer than the number
of bits that are needed to encode a break, and then any adversary that breaks
the resulting primitive can be converted into a “compressor” (that given the
seed outputs a break), thus violating the seed-incompressibility of the underly-
ing function.

We unfortunately were not able to find a construction that provably achieves
seed-incompressible correlation intractability under a better-known computa-
tional hardness assumption. Still, one can conjecture that ad-hoc constructions
such as AES or HMAC-SHA1 have this property. Such a conjecture is theoret-
ically more appealing than using the random-oracle model since, at the very
least, we do not have a proof that it is false, while still providing a conjecture
open to disproof. We explain below our intuition for why one might conjecture
that AES and SHA type constructions satisfy our definitions.

1.1 Seed-Incompressibility and Contemporary Block-Ciphers

Here is one way to use the intuition behind DES and AES like block-cipher
constructions to possibly construct seed-incompressible functions. We will use
AES to denote any similar composition-of-round based block-cipher construc-
tion. Each AES function is expressed as the composition of r rounds of per-
mutations pk1 ◦ ... ◦ pkr

, where each n-bit ki is determined by the key. For this
theoretical presentation, instead, we assume that all the “round keys” ki are
chosen randomly and independently. Consider now using not r rounds but nr
(independent) rounds. It seems unlikely that a key of this new construction can
be “compressed” to only (say) n/2 bits. The intuition (at least for the case where
the compressed seed consists of actual key bits), is that if the compressed seed
is so short then there must be r consecutive rounds for which the key is com-
pletely undetermined, which in some intuitive sense is as strong as a standard
r-round construction of an AES like construction. One issue for block-cipher like
constructions is their invertibility, but by choosing a compressed seed of only
n/2 bits, then it is not enough to help inverting the AES function. For example
giving n/2 bits from the pre-image of zero does not appear to help when the
AES permutation is mapping over an n-bit domain.



1.2 Related Work

The Random-Oracle Model. Following the Fiat-Shamir heuristic for transform-
ing public-coin identification protocols into signature schemes [14] and several
other uses of random-oracles in the literature, although sometimes used in dif-
ferent contexts (e.g., [18]), Bellare and Rogaway formalized the random-oracle
heuristic as a “general-purpose” design methodology for cryptographic schemes
[2] and emphasized the need to develop formal proofs of security within it. The
methodology requires that one first design an ideal system in which all parties
(including the adversary) have oracle access to a truly random function and
prove the security of this ideal system. (The proof is called “a security proof in
the random-oracle model.”) Next, one replaces the random oracle by a “crypto-
graphic hash function” (such as SHA), where all parties (including the adversary)
have a succinct description of this function. Thus, one obtains an implementation
of the ideal system in a “real-world” where random oracles do not exist.

The random-oracle methodology has been used quite extensively since then,
often resulting in very efficient and seemingly secure schemes. A drawback of
this methodology, however, is that it is not at all clear what security properties
are needed from the cryptographic hash function in order for a specific scheme
to be secure. In fact, Canetti et al. demonstrated that this methodology is not
sound in general, in that there exist secure “ideal schemes” that have no secure
implementation in the “real world” [6]. A similar negative result was later proved
by Goldwasser and Kalai also for the original Fiat-Shamir heuristic [16].

Still, there are many cryptographic schemes whose only known security proof
is in the random-oracle model, some of which withstood substantial cryptanalysis
and are widely implemented and deployed. Seeking to provide some theoretical
footing to the security of such schemes, we would like to be able to describe
“random-oracle like” properties that are (a) well-defined, (b) realizable, and (c)
sufficient for the security of some instances of the random-oracle methodology.
As we mentioned above, a first step in this direction was taken a decade ago by
Canetti et al. with the notion of perfect one-way hashing [4, 7].

With respect to the realizability of such notion, one thing that we could
have hoped for is to prove its existence based on a more standard cryptographic
assumption (e.g., the hardness of factoring). We point out, however, that at
least as important is that there will be some hope (or intuition) that typical
cryptographic functions such as SHA or AES actually fulfill this notion (as it
is these functions that are used in actual implementations of protocols proven
correct in the Random Oracle model).

Conditional Entropy Hash Functions. Barak et al. [1] conjectured the existence
of families of hash functions hs for which no attacker can generate an input that
has a predictable output. Specifically, a keyed function hs(x) is said to “ensure
conditional entropy e” if for every attacker A that takes as input the key s
and produces as output an input x to h, it holds that the conditional entropy
H(hs(A(s))|A(s)) ≥ e. This notion appears to be very close to the notion of



correlation intractable functions of [6] (since if hs(x) has “high entropy” then it
is unlikely to hit any evasive relation).

Barak et al. show that such functions are sufficient to implement the Fiat-
Shamir heuristic to Σ-protocols, as is done herein with seed incompressible func-
tions. (This result from [1] casts doubt on the informal claim made in [6] that cor-
relation intractability was insufficient for such constructions.) Yet, other than via
the connection to correlation-intractability, their notion seems unrelated to seed-
incompressibility. For example, we do not see a obvious way in which conditional
entropy hashes imply collision-resistance, as we show seed-incompressibility does
in Section 5.1.

Exposure-Resilient Functions. The notion that we investigate in this work can
be seen as an enhancement of exposure-resilient functions (ERFs) as defined and
constructed by Canetti et al. [5]. Recall that an ERF is a function whose output
looks random even when some of the input bits are known. It is easy to see that
if we restrict the seed compression attack to only output some of the bits of the
seed, then a “seed incompressible PRF” can be constructed from an ERF and a
standard PRF (by first applying the exposure-resilient function to the seed).

The Bounded-Retrieval Model. Our seed-compression attack model can also be
seen as an instance of the “bounded-retrieval model” that was introduced by
Dziembowski and by Di Crescenzo et al. [13, 11]. In this model, an adversary
installs a virus on a target machine; the virus can observe all the secrets on
the target machine, but only has a limited available bandwidth with which to
communicate these secrets back to its “home base”. The works of Dziembowski,
Di Crescenzo et al. and Cash et al. [13, 11, 8] investigate obtaining secure key-
exchange and authentication protocols in this model.

The current work can be thought of as trying to obtain primitives similar to
pseudo-randomness in the same setting. (However, our focus is quite different,
we view this model merely as a tool in order to establish primitives that can be
used in other more standard models.)

Compressibility of NP Languages. A different notion of “compressibility” with
applications to cryptography was recently proposed by Harnik and Naor [17]. In
their notion, we are given an NP language and a word that is potentially in that
language, and we try to produce a shorter word that is in the language if and
only if the original is. For example, we are given a CNF formula φ and we try to
compress it to a shorter φ′ such that φ′ is satisfiable if and only if φ is.5 Harnik
and Naor proved that if SAT is compressible then collision-resistant hashing can
be constructed from one-way functions.

Our notion of compression seems quite different from the one of Harnik and
Naor: roughly the difference is that they consider compressing the instance,
whereas we are interested in compression of the witness (i.e., the secret seed of
the function in our case).
5 The length of φ′ should be poly-logarithmic in the length of φ, but can be polynomial

in the number of variables of φ.



2 Notations and CS Proofs

Notations. We define some notation used throughout the paper. Given a bit b,
we use b` to denote the bit-string of ` bits b. Concatenation of bit strings is
denoted with ||. Given an ` bit-string s = s1, ..., s` and c ≤ ` we denote its first
c significant bits s1, ..., sc by bscc. We use a ∈R S to denote choosing uniformly
at random an element a from a set S. We use negl(n) to denote some function
f , such that for all c and sufficiently large n f(n) ≤ 1/nc and poly(n) denotes
some polynomial function p ∈ O(nd) for some constant d.

CS Proofs. Our negative results use CS-proofs as constructed by Micali [20]
(using techniques from Kilian [19]), as well as a variant of them due to Naor and
Nissim [22]. Below, we briefly recall the definition. For our purposes, we view a
CS-proof system as consisting of a prover, Prv, that wants to convince a verifier,
Ver, of the validity of an assertion x ∈ L where L is some NP-language and
Prv is in possession of a witness w for x.6 In our context, we use non-interactive
CS-proofs that work in the Random Oracle Model; that is, both the prover and
verifier have access to a common random oracle. The prover generates an alleged
proof that is examined by the verifier.

Definition 1 (Non-interactive CS proofs in the Random Oracle Model).
A CS-proof system for a language L ∈ NP (with relation RL), consists of two de-
terministic polynomial-time oracle machines, a prover Prv and a verifier Ver,
operating as follows:

– On input (1k, x, w) such that (x,w) ∈ RL and access to an oracle O, the
prover computes a proof π = PrvO(1k, x, w) such that
|π| ≤ poly(k, log(|x|+ |w|)).

– On input (1k, x, π) and access to O, the verifier decides whether to accept or
reject the proof π (i.e., VerO(1k, x, π) ∈ {accept, reject}).

The proof system satisfies the following conditions, where the probabilities are
taken over the random choice of the oracle O:

Perfect completeness: For any (x,w) ∈ RL and for any k,

Pr
O

[
π ← PrvO(1k, x, w), VerO(1k, x, π) = accept

]
= 1.

Computational soundness: For any polynomial time oracle machine Bad
and any input x /∈ L it holds that

Pr
O

[
π ← BadO(1k, x), VerO(1k, x, π) = accept

]
≤ negl(k).

We sometimes also require a stronger soundness condition by replacing the neg-
ligible function negl(k) with an exponentially small function poly(k+|x|)

2k . (This
stronger condition can still be proven in the random-oracle model.)
6 Micali defined CS-proofs more generally, but we do not need this extra generality

for our purposes.



3 Seed-Incompressible Pseudo-Random Functions

Following the intuition as presented in the introduction, we would have liked
to have a construction F = {fs} such that fs looks random even when given
a “compressed version of s.” Formalizing this takes some care, since this “com-
pressed version of s” could be, for example, the first |s|/2 bits of fs(0) (which
would make it easy to distinguish fs from an unrelated random function). This
technicality can be solved by borrowing the technique used by Coron et al. (in
the context of domain extenders for random oracles) [9]. Namely, the second
phase of the adversary gets either the compressed seed σ and access to fs(·), or
access to a random function f(·) and a “simulated compressed seed” that was
generated by a simulator Sf (where S has access to the same random f).

In the formal definition below, we fix some polynomially-bounded length
functions `1, `2 and consider function families from `1(n) bits to `2(n) bits with
n-bit seeds. We denote by Fn the set of all functions f : {0, 1}`1(n) → {0, 1}`2(n).

Definition 2 ( Seed-Incompressible PRFs ). Let {Fn}n∈N be a family of
functions such that Fn : {0, 1}n × {0, 1}`1(n) → {0, 1}`2(n) can be efficiently
computed, and denote fs(·) ≡ F (s, ·).

The family {Fn} is pseudo-random under seed-compression attacks if for ev-
ery two-phase efficient adversary Adv = (A,B) there exists an efficient simula-
tor S and a negligible function negl such that∣∣∣∣∣Pr

[
s ∈R {0, 1}n, σ ← A(s) : |σ| ≤ n/2 and Bfs(σ) = 1

]
− Pr

[
f ∈R Fn, σ ← Sf (1n) : |σ| ≤ n/2 and Bf (σ) = 1

]
∣∣∣∣∣ ≤ negl(n)

Seed-Incompressible PRFs would have been very useful, but unfortunately
they do not exist, as will be shown below. While we show that SI-PRFs do not
exist, a related concept will be introduced later, and therefore the discussion is
useful for this later topic.

Theorem 1. Seed-Incompressible PRFs as defined in Definition 2 do not exist.

Proof. Let {Fn}n∈N be a family of functions as in Definition 2. We show a two-
phase adversary Adv = (A,B) for which no simulator exists. Fix some n and let
`1 = `1(n) and `2 = `2(n). Let j = d2n/`2e (i.e., the output of fs on 1, 2, . . . , j
contains at least 2n bits).

The first phase of the adversary, A, gets as input a seed s ∈ {0, 1}n. It
computes yi = fs(0||i) for i = 1, 2, . . . , j, and then prepares a CS-proof π for the
true NP statement

“there exists a seed s′ such that yi = fs′(0||i) for i = 1, 2, . . . , j” (?)

The proof is prepared relative to the oracle O(·) = fs(1||·) and security parame-
ter k =

√
n. Then A outputs the proof π as the “compressed seed”, to be used by

the second phase B. (Notice that the length of this proof is k·polylog(n) < n/2.)



The second phase B, on input π, first uses its oracle f to compute yi = f(0||i)
for i = 1, 2, . . . , j, thereby recovering the statement that π is supposed to be a
CS-proof for. Then B attempts to verify the proof π relative to f(1||·) (where f
is the provided oracle) and security parameter k =

√
n. It accepts if the proof is

valid and rejects otherwise. By the perfect completeness of CS-proofs, B accepts
with probability one when given the proof that A generated and access to the
same fs for which that proof was generated.

On the other hand, the soundness of CS-proofs implies that no simulator
can make B accept with non-negligible probability. Indeed, when f is a random
function in Fn then y1, . . . , yj consist of at least 2n random bits, hence the
probability that the statement (?) from above is true is at most 2−n. And if
the statement is not true, then no efficient simulator with access to a random f
can generate a valid proof for it with probability better than poly(n) · 2−Θ(k) =
negl(n).

4 Seed-Incompressible Correlation Intractability

Canetti et al. [6] introduced the concept of Correlation Intractability to capture
the intuition that the adversary cannot “hit” any rare input-output relation.
Roughly, an evasive relation R is one where it is hard to find an input x such that
(x, f(x)) ∈ R for a random function f , and a function family F is correlation
intractable if for any evasive relation R it is hard to find (x, f(x)) ∈ R for a
random member f ∈ F . These notions can be extended to 2p-ary relations in
the obvious way (see below).

Canetti et al. proved that correlation-intractable function families do not
exist, in that an adversary that knows the short description of f ∈ F can always
find some (x, f(x)) ∈ RF for a particular relation RF that depends on F . In
our case, however, we are interested in an adversary that does not see the entire
description of f ∈ F but only gets a “compressed description”. We provide
the formal definitions below, and then discuss the extent to which the negative
results from [6] and from Section 3 do or do not extend to this new notion. Below
we again fix some polynomially bounded length functions `1, `2, and denote by
Fn the set of all functions f : {0, 1}`1(n) → {0, 1}`2(n).

Definition 3 (Evasive Relations). A 2p-ary relation R is evasive if for any
efficient adversary A, there is a negligible function negl such that for all suffi-
ciently large n

Pr
f∈Fn

[〈x1, . . . , xp〉 ← Af (1n) : 〈x1, . . . , xp, f(x1), . . . , f(xp)〉 ∈ R] ≤ negl(n).

Sometimes we are interested only in efficient relations, namely relations R for

which the membership problem 〈x1, . . . , xp, y1, . . . , yp〉
?
∈ R can be efficiently

decided (i.e., in polynomial time).

Definition 4 (Seed-Incompressible Correlation Intractability).
Let {Fn}n∈N be a family of functions where Fn : {0, 1}n×{0, 1}`1(n) → {0, 1}`2(n)

can be efficiently computed, and denote fs(·) ≡ F (s, ·).



For some polynomial p = p(n), we say that the family {Fn} is correlation
intractable under seed-compression attacks with respect to 2p-ary relations if
for every 2p-ary evasive relation R, and for every two-phase efficient adversary
Adv = (A,B), there is a negligible function negl such that for all sufficiently
large n

Pr
[
s ∈R {0, 1}n, σ ← A(s), 〈x1, . . . , xp〉 ← Bfs(σ) :
|σ| ≤ n/2 and 〈x1, . . . , xp, fs(x1), . . . , fs(xp)〉 ∈ R

]
≤ negl(n).

We also call such function families seed-incompressible correlation-intractable
(with respect to 2p-ary relations), or SI-CorInt(2p), for short.

In the case that we restrict the above quantification on all evasive rela-
tions to only efficient evasive relations, we say that the family {Fn} is weakly
seed-incompressible correlation-intractable with respect to 2p-ary relations (wSI-
CorInt(2p)).

4.1 Do SI Correlation Intractable Functions Exist?

The first question to answer with respect to the seed-incompressible correlation
intractability as defined above is whether we can extend the impossibility result
from Theorem 1 (or from [6]) to show that it too cannot be realized.

One first observes that for some setting of parameters, an attacker in the
seed-compression model is just as powerful as an attacker that has the full un-
compressed seed. Specifically, if the seed is more than 2p times the length of the
input to h, then the first phase of an attacker in the seed-compression model can
output the vector that breaks the correlation intractability as the “compressed
seed”. However, the impossibility results from [6] do not extend to very long
seeds, so this simple observation does not appear to shed new light on the exis-
tence of SI-CorInt functions. Below we show, however, that the technique from
Theorem 1 can be extended for some settings of parameters:

As opposed to the case of Theorem 1, here the adversary needs not only to
distinguish fs from random (which can be done with CS-proofs), but also to
compute some “unpredictable relation”. The idea that we exploit here is that
the CS-proof itself can be thought of as an “unpredictable relation.” Roughly,
we have a relation of the form 〈(1, . . . , t, v1, . . . , vm), (x1, . . . , xt, y1, . . . , ym)〉 :

The CS-proof (v1, . . . , vm) is valid for the instance (x1 = f(1),
. . . , xt = f(t)) w.r.t. V receiving oracle answers (y1, . . . , ym).


Tracing through the various parameters we see that to use Micali’s construction
for CS-proofs with a relation such as above we need t = (n+ω(log n))/`2(n) and
m = polylog(n). Hence we get an impossibility result for 2p-ary relations where
p = n/`2(n) + polylog(n). Moreover, if we assume the existence of collision-
resistant hashing then we can use the variant of CS-proofs with few oracle calls
due to Naor and Nissim [22], and then we can get by with a relation that only
depends on m = O(n/`1(n)) of the vi’s. Hence for function families with n-bit



seeds and input/output bit lengths of size `1(n), `2(n) = Ω(n) we also obtain an
impossibility result for 2p-ary relations where p = O(1) (we can get as low as
p = 3 when `1(n), `2(n) > n.)

Lemma 1. An efficiently computable functions family {Fn : {0, 1}n×{0, 1}`1(n) →
{0, 1}`2(n)} cannot be weakly correlation intractable under seed-compression at-
tacks with respect to 2p-ary relations, for any p ≥ d(n + ω(log n))/`2(n)e +
dpolylog(n)/`2(n)e.

Moreover, if collision resistant hash function family {Hn : {0, 1}n×{0, 1}`4(n) →
{0, 1}`5(n)} exist, for polynomials `4(n) > `5(n), then no family as above can be
correlation intractable under seed-compression attacks with respect to 2p-ary re-
lations where p ≥ d(n + ω(log n))/`2(n)e + dnε/`2(n)e + dnε/`1(n)e (for any
ε > 0).

A proof of this lemma will be in the full version of this paper.

Smaller relations. We speculate that current techniques cannot be used to rule
out relations with arity less than 6. This is because with the current technique of
using CS-proofs, you would need at least one oracle call to specify the function
instance, at least one oracle call for the CS-proof, and you would have to use at
least one more vi to describe the CS-proof itself. Thus it is still plausible that
seed-incompressible correlation intractable function families exist with respect
to such low-arity relations.

5 Implications of Seed-Incompressible Correlation
Intractability

We demonstrate the usefulness of seed-incompressible functions by showing how
they can be used to easily construct two primitives: specifically collision-resistant
hash functions and (single-theorem) NIZK systems via the Fiat-Shamir method-
ology. More generally, the primitives that can be constructed from seed-incom-
pressible functions are those for which a “break” can be encoded with only a few
bits. (For example, one can encode a collision in a hash function using only two
inputs to the function. Similarly, for a NIZK that was derived from a 3-move Σ-
protocol, one can encode a false proof using only the two messages that the prover
sends.) When constructing such primitives from seed-incompressible functions,
we let the seed of the function be sufficiently longer than the number of bits that
are needed to encode a break, and then any adversary that breaks the resulting
primitive can be converted into a “compressor” (that given the seed outputs a
break), thus violating the seed-incompressibility of the underlying function.

5.1 Collision Resistant Hashing

We show that seed-incompressible correlation-intractable function with respect
to quaternary relations must be “essentially collision-resistant.” We view this



feature as a minimal requirement for any primitive that one hopes to use in
lieu of a random-oracle, since heuristic implementations of random-oracle-based
constructions always use collision-resistant hash functions such as SHA to replace
the oracle. Note that it is not true that any seed-incompressible function is also
collision-resistant (for example, seed-incompressible functions need not be length
decreasing). Rather, we show below that any seed-incompressible function must
have “embedded in it” a collision-resistant function.

Specifically, given a seed-incompressible correlation-intractable function fs(·),
we consider shortening the inputs and outputs of fs so that the inputs are shorter
than one quarter of the seed and the outputs are shorter than the inputs. We
then observe that an algorithm that finds collisions in the resulting (length-
decreasing) function can be (trivially) converted to a “compressor” that breaks
the seed-incompressibility of fs: the “compressor” only needs to output the col-
lision.

We formally state the definition of collision-resistance for completeness and
then state the theorem with proof.

Definition 5 (Collision Resistant Hash Functions (CRHF)).
Fix polynomially-bounded length functions `2(n) < `1(n). A function generator
{Hn : {0, 1}n × {0, 1}`1(n) → {0, 1}`2(n)}n∈N is collision resistant if for every
probabilistic polynomial time adversary A there is a negligible functions negl such
that for all sufficiently large n:

Pr[s← {0, 1}n, (x1, x2)← A(s) | x1 6= x2 ∧ hs(x1) = hs(x2)] ≤ negl(n).

Theorem 2. If there exists a function family {Fn : {0, 1}n × {0, 1}`1(n) →
{0, 1}`2(n)} with super-logarithmic length functions `1, `2 = ω(log n), which is
correlation intractable under seed-compression attacks with respect to quaternary
relations, then collision resistant hash functions exist.

Proof. Let `1, `2 be super-logarithmic length functions, `1, `2 = ω(log n), and
assume that a family F = {Fn : {0, 1}n × {0, 1}`1(n) → {0, 1}`2(n)}n∈N is cor-
relation intractable under seed-compression attacks with respect to quaternary
relations.

Consider a modification of the family F to operate on potentially shorter
inputs and outputs. Namely, let `′1 = min(`1, n/4) and `′2 = min(`2, `′1 − 1), and
consider the family H = {Hn : {0, 1}n × {0, 1}`′1(n) → {0, 1}`′2(n)}n∈N which if
defined as follows: on seed s of length n and input x′ of length `′1, first append
zeros to x′ up to length of `1 bits, then apply F (s, ·) to the result, and finally
take only the first `′2 bits of the outcome.

H(s, x′) def= bF (s, x)c`′2 , where x = x′||0`1(|s|)−`
′
1(|s|).

We prove that if F is SI-CorInt with respect to quaternary relations then H is
collision-resistant. In particular, consider the relation R ⊂ {0, 1}`1 × {0, 1}`1 ×
{0, 1}`2 × {0, 1}`2 :

R
def= {(x1, x2, y1, y2) | x1 6= x2 and by1c`′2 = by2c`′2}.



This relation is clearly evasive, as every polynomial-tie adversary has probability
at most poly(n)·2−`′2 = negl(n) of outputting x1, x2 for which (x1, x2, f(x1), f(x2)) ∈
R where f is a random function (since `′2 is super-logarithmic).

Assume for contradiction that the family H from above is not collision resis-
tant, and let C be a collision finding adversary that given a random s ∈ {0, 1}n
outputs a pair of strings x1, x2 ∈ {0, 1}`

′
1 such that H(s, x1) = H(s, x2) with

probability at least 1/nc. Then, define the adversary Adv = (A,B) for the
underlying SI-CorInt family as follows: The “compressor” A(s) simply out-
puts the collision (x1, x2) = C(s), and note that |A(s)| = n/2. The second
phase of the attack is just translate H-inputs into F -inputs by appending ze-
ros, namely B(x1, x2) outputs (x′1, x

′
2) where x′i = xi||0`1−`

′
1 . By definition

if H(s, x1) = H(s, x2) (which happens with non-negligible probability) then
bF (s, x′1)c`′2 = bF (s, x′2)c`′2 , and therefore (x′1, x

′
2, F (s, x′1), F (s, x′2)) ∈ R, con-

tradicting the security of F .

5.2 From Σ-Protocols to NIZK Arguments

One of the “signature uses” of the random-oracle heuristic is to remove interac-
tion from zero-knowledge protocols using the Fiat-Shamir heuristic. Specifically,
given a public-coin honest verifier zero-knowledge proof system (known as Σ-
protocols in the case where the number of rounds is three), it is possible to
transform it into a non-interactive protocol by replacing the verifier’s messages
with the output of a “cryptographic hash function”, applied to the transcript
up to that point.

It is well known that if the original protocol has negligible soundness error,
then the resulting non-interactive protocol can be proven in the random-oracle
model to be a non-interactive zero-knowledge argument system, and can also be
used as a secure signature scheme. On the other hand, Goldwasser and Kalai
proved in [16] that there exist interactive Σ-protocols with negligible soundness
for which their resulting protocols are not secure signature schemes in the stan-
dard model, no matter what function family is used to replace their interaction.

However, that negative result still leaves the possibility of a function fam-
ily that will convert the interactive protocol into a NIZK argument system for
a single theorem. Indeed, below we show that the latter is possible if seed-
incompressible correlation-intractable functions exist.

We begin by recalling the definitions of Σ-protocols and NIZK argument
systems. Below let L be an NP-language and let RL be a binary relation that
defines L, namely L = {x : ∃w s.t. (x,w) ∈ RL} (where the witness w has
length polynomial in |x|).

Σ-Protocols. For a pair (P, V ) of interacting protocols, we denote by (P, V )(x,w)
a run in which P has input (x,w) ∈ RL, V has input x, and P attempts to con-
vince V of the validity of the assertion x ∈ L. For a three-move protocols as
above (with P going first), denote by α, β, and γ the three messages that are



exchanged in the protocol, and let P1, and P2 be the randomized functions that
the prescribed prover uses to compute its two messages, namely we have

(α, state)← P1(x,w), and γ ← P2(x,w, state, α, β).

We also denote by V ∗ the function that the verifier employs to decide whether
to accept or reject the proof,

V ∗(x, α, β, γ) ∈ {accept,reject}.

Typically, the first flow α is called a commitment, the second flow β is called a
challenge, and the third flow γ is called a response.

Definition 6. A 3-move protocol (P, V ) as above is a Σ protocol for a lan-
guage L if it satisfies the following properties:

Public-coin verifier. The message β sent by V is always a sequence of t(|x|)
uniformly chosen random bits (for some length function t).

Perfect completeness. For every (x,w) ∈ R:

Pr
[

(α, state)← P1(x,w); β ∈R {0, 1}t(|x|); γ ← P2(x,w, state, α, β) :
V ∗(x, α, β, γ) = accept

]
= 1,

where the probability is over the random choices of P1, P2 and β.
Soundness. There is a negligible function negl such that for every x /∈ LR, for

every pair of adversarial (computationally unlimited) prover circuits P ∗1 , P
∗
2 :

Pr
[
α← P ∗1 (x); β ∈R {0, 1}t(|x|); γ ← P ∗2 (x, β) : V ∗(x, α, β, γ) = acpt

]
=

1
2t(|x|)

,

where the probability is over the random choice of β. 7 We note a property of
Σ-protocols of interest to our later arguments: For every Σ-protocol, simple
parallel repetition and padding arguments allow the length t(|x|) of the veri-
fier’s challenge to be set to an arbitrary positive integer. 8 For the remainder
of the paper we therefore assume that t ∈ ω(log n), and that the adversaries
probability of success, as stated above, is negligible in |x|.

Zero-knowledge. There exists a polynomial-time simulator S that on input x
and β′ ∈ {0, 1}t(|x|) outputs (α′, β′, γ′) (we have S outputting its input β′ to
simplify the notations somewhat).
We require that for every (x,w) ∈ RL and every β′ ∈ {0, 1}t(|x|), the distri-
bution on (α′, β′, γ′) = S(x, β′) is identical to the conditional distribution on
the transcript (α, β, γ) = (P, V )(x,w), when conditioned on β = β′.

7 Traditionally Σ-protocols are defined with a stronger soundness condition called
extractability that clearly implies the current soundness definition.

8 We refer the reader to [10] for a complete discussion on this and other properties of
Σ-protocols.



NIZK Arguments We remind the reader that the common reference string
(CRS) model is one in which all participants and the adversary have access to a
polynomial sized common reference string chosen by a trusted third party from
a pre-specified distribution (which we denote D).

Definition 7. A pair of efficient probabilistic algorithms (P, V ) are a single-
theorem NIZK argument system for a language L (specified by a binary relation
RL) in the CRS model, if it satisfies:

Completeness. ∀(x,w) ∈ R, Pr
crs,P,V

[σ ← P (crs, x, w) : V (crs, x, σ) = 1] = 1.

Computational Soundness. For every (possibly cheating) efficient probabilistic
prover P ∗ there is a negligible function negl such that for all x /∈ L:

Pr
crs,P∗,V

[σ ← P ∗(crs, x) : V (crs, x, σ) = 1] ≤ negl(|x|).

Zero-Knowledge. There exists an efficient simulator S such that for every (x,w) ∈
R, the output of the following two experiments are (computationally, statistically,
perfectly)-indistinguishable.

Exp1(x,w)
crs← D
σ ← P (crs, x, w)
Output (crs, σ)

Exp2(x)
(crs′, σ′)← S(x)

Output (crs′, σ′)

The Fiat-Shamir Transformation Fiat-and Shamir described in [14] a trans-
formations that turnsΣ-protocols into non-interactive argument systems. Specif-
ically, instead of having the verifier choose a random challenge β, one computes β
by applying a hash function to the input x and the commitment α, setting
β = f(x, α). The non-interactive proof σ then consists of the elements α, γ of
the Σ-protocol (i.e., the commitment and the response). Given the input x and
(α, γ), the verifier computes β = f(x, α) and checks that V ∗(x, α, β, γ) =accept.
It is easy to show that when the hash function f is modeled as a random oracle
then the resulting protocol is still computationally sound (since the challenge
β is still a string of random bits that the adversary cannot control, other than
attempting to select a polynomial number of them). Moreover, if the simulator
can program the random oracle then this protocol also remains zero-knowledge.

We next show that using SI-CorInt families (with respect to quaternary re-
lations), we can construct function families for which the Fiat-Shamir transfor-
mation yields a single-theorem NIZK argument system in the CRS model.

– Let (P, V ) be aΣ-protocol in which the commitment, challenge, and response
are of lengths |α| = t1(|x|), |β| = t2(|x|), and |γ| = t3(|x|), respectively.

– Also, let {F : {0, 1}n × {0, 1}`1(n) → {0, 1}`2(n)}n∈N be a function family,
where `1, `2 are polynomially bounded from above and below. (That is n1/c ≤
`1(n), `2(n) ≤ nc for some constant c > 1 and every sufficiently large n).



For inputs of length |x| = m, we choose the security parameter n (which
defined the seed-length for F ) as n = max{ 2(m + t1(m) + t3(m)), `−1

1 (m +
t1(m)), `−1

2 (t2(m)) }. Namely, n is chosen large enough so that m + t1(m) +
t3(m) ≤ n/2 and also `1(n) ≥ m + t1(m) and `2(n) ≥ t2(m). Note that since
`1, `2 and the ti’s are polynomially-bounded, then n is polynomial in m. Below
we view n, `1, `2 as functions of the input length m. We then reset the input and
output length to be exactly `′1 = m+ t1(m) and `′2 = t2(m) by setting

F ′(s, x′) def= bF (s, x)c`′2 , where x = x′||0`1−`
′
1

Finally we define H : {0, 1}n+`′2 × {0, 1}`′1 → {0, 1}`′2 as

H(〈s, z〉 , x′) def= z ⊕ F ′(s, x′) = z ⊕
⌊
F
(
s, x′||0`1−`

′
1

)⌋
`′2

(1)

We are now ready to describe the NIZK argument system. The CRS consists of
a pair (s, z) where s ∈ {0, 1}n is a seed for the underlying function F and z is
a random string of length `′2 = t2(m) (so together 〈s, z〉 are a seed for the func-
tion H from Eq. (1)). The NIZK argument system is obtained by applying the
Fiat-Shamir transformation to the original Σ-protocol (P, V ) using the function
Hs,z.

Namely, on input (x,w) ∈ RL with |x| = m and crs = (s, z), the prover sets
(α, state) = P1(x,w), β = Hs,z(x, α) and γ = P2(x,w, state, α, β). The proof is
the string σ = (α, γ). Given x, crs = (s, z), and the proof σ = (α, γ), the verifier
computes β = Hs,z(x, α) and checks that V ∗(x, α, β, γ) =accept.

Theorem 3. Let (P, V ) be a three round Σ-protocol for the language L, defined
by the NP relation RL, and let F = {F : {0, 1}n × {0, 1}`1(n) → {0, 1}`2(n)}n∈N
be a function family with polynomially-bounded length functions.

If (P, V ) has a negligible soundness error and F is correlation intractable
under seed-compression attacks with respect to quaternary relations, then apply-
ing the Fiat-Shamir transformation to (P, V ) using the function family H from
Eq. (1) yields a single theorem NIZK argument system for L in the CRS model.

Proof. The perfect completeness of the resulting NIZK system follows immedi-
ately from the perfect completeness of the Σ-protocol.

For the zero-knowledge property, the simulator S∗ for the NIZK system uses
the simulator S given by the Σ-protocol. It first chooses a random value β′ ∈
{0, 1}t2(|x|) and uses S to compute S(z) = (α′, β′, γ′). It then chooses a random
seed s ∈ {0, 1}n for the function F and computes

z = β′ ⊕ F ′(s, 〈x, α′〉) = β′ ⊕
⌊
F
(
s, 〈x, α′〉 ||0`1−`

′
1

)⌋
`′2

Note that by definition, we have H(〈s, z〉 , 〈x, α′〉) = β′. The simulator S∗

outputs the CRS 〈s, z〉 and proof 〈α′, γ′〉. Clearly, the distribution on the output
of S∗ is identical to the distribution on the real pairs of CRS and proof.



It is left to prove computational soundness. Suppose for contradiction that
there existed an efficient cheating prover P̂ ′ such that for a constant c > 0 and
infinitely many x /∈ L it holds that:

Pr
s,z

[
σ ← P̂ ′((s, z), x) : V̂ ((s, z), x, σ) = accept

]
≥ |x|−c. (2)

We then show a non-uniform seed-compression adversary Adv = (A,B) that
breaks the correlation-intractability of the underlying family F .

For each x /∈ L, denote by z(x) the auxiliary string z that maximizes the
success probability of P̂ ′. That is,

z(x) = argmax
z

{
Pr
s

[
σ ← P̂ ′((s, z), x) : V̂ ((s, z), x, σ) = accept

]}
.

An easy averaging argument implies that whenever Eq. (2) holds:

Pr
s

[
σ ← P̂ ′((s, z(x)), x) : V̂ ((s, z(x)), x, σ) = accept

]
≥ |x|−c.

On the other hand, for any x /∈ L the relation

R̂x =

(x1, x2, y1, y2)

∣∣∣∣∣∣ x1 =
(
〈x, α〉 ||0`1−`′1

)
and

V ∗
(
x, α,

(
z(x)⊕ by1c`′2

)
, x2

)
= accept


is evasive by the soundness of the original Σ-protocol. (Note, that z(x) is a
constant in this relation, so XOR-ing it to by1c`′2 = bf(x1)c`′2 has no effect on
soundness when f is a random function.) It follows that for our evasive relations
Rx R̂ =

⋃
x/∈L R̂x is also an evasive relation.

Since our choices of parameters imply that |x|+ |α|+ |γ| ≤ n/2, then we can
use P̂ ′ to construct a seed-compression attacker Adv = (A,B). The first part A
gets as advice string the values x, z(x) for some x /∈ L for which Eq. (2) holds, as
well as the seed s for F . It uses P̂ ′ to compute α, γ, and outputs (x, α, γ) as the
“compressed seed”, and indeed the length of this “compressed seed” is at most
n/2. The second part B outputs 〈x, α〉 and γ, and indeed we have by definition
(〈x, α〉 , γ, F (s, 〈x, α〉), F (s, γ)) ∈ R̂.

5.3 Non-Uniformity in the Proof of The Fiat-Shamir Transform

We comment that the proof of Theorem 3 seems inherently non-uniform. We
use non-uniformity in two places: one is to select x /∈ L for which P̂ ′ has good
success probability, and the other to select the auxiliary z(x). The first use can
be eliminated by switching to a uniform soundness condition on the underlying
Σ-protocol (i.e., when a uniform cheating prover needs to output some x /∈ L
together with a convincing proof for it). The latter use of non-uniformity seems
harder to eliminate, however. Maybe this can be done by switching to 6-ary
relations and setting z = F (s, 0), so we get

R̂′ =

{
(x1, x2, x3, y1, y2, y3)

∣∣∣∣∣ x1 = 0, x2 = 〈x, α〉 , x3 = γ,

x /∈ L and V ∗
(
x, α, by1 ⊕ y2c`′2 , γ

)
= accept

}



It is not hard to see that this R̂′ is evasive, but it is not clear how to translate
the success of P̂ ′ in breaking the soundness (when z is chosen at random) to
success against this R̂′ (when z is set as z = F (s, 0) for a random s).

6 Future Work and Open Problems

The most intriguing open question that results from this work is whether seed-
incompressible correlation-intractable functions can be constructed under more
traditional computational assumptions. Given that their existence implies the
existence of NIZK protocols without the aid of any apparent trapdoor feature,
such a construction will likely need substantial insight. Alternately, and just as
interesting, would be an argument showing that knowledge of small numbers of
key-bits really does allow one to say something meaningful about composition
based block-cipher and hash-function designs.

In a slightly orthogonal direction, the impossibility results presented in this
paper are derived through proving exactly the one property of the function gen-
erators that we know the adversary has direct knowledge of: the function is com-
puted by a small circuit. Any definition along the lines of seed-incompressibility
that also managed to circumvent this problem would be interesting.

Finally, it would be nice if one could show that the OAEP scheme proposed
by Bellare and Rogaway[3] (or a close relative of it) could be proven secure under
such an assumption, as it is this random-oracle protocol that is probably used
in practice on the most frequent basis (due to its inclusion in the TLS protocol
[12] for secure web transactions), and thus further evidence of its security would
be heartening.
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