Homomorphic Encryption Tutorial

Shai Halevi - IBM August 2013

Computing on Encrypted Data

I want to delegate processing of my data, without giving away access to it.

Outsourcing Computation

"I want to delegate the computation to the cloud, but the cloud shouldn't see my input"

Client
(Input: x)

Privacy Homomorphisms

- Rivest-Adelman-Dertouzos 1978

Example: RSA_encrypt ${ }_{(e, N)}(x)=x^{e} \bmod N$

- $x_{1}{ }^{\mathrm{e}} \times x_{2}{ }^{\mathrm{e}}=\left(x_{1} \times x_{2}\right)^{\mathrm{e}} \bmod N$
"Somewhat Homomorphic": can compute some
functions on encrypted data, but not all

"Fully Homomorphic" Encryption

- Encryption for which we can compute arbitrary functions on the encrypted data

Some Notations

- An encryption scheme: (KeyGen, Enc, Dec)
- Plaintext-space $=\{0,1\}$
$\ominus(p k, s k) \leftarrow \operatorname{KeyGen}(\$), c \leftarrow \operatorname{Enc}_{\mathrm{pk}}(b), b \leftarrow \operatorname{Dec}_{s k}(c)$
- Semantic security [GM'84]:
$\left(p k, \operatorname{Enc}_{p k}(0)\right) \approx\left(p k, \operatorname{Enc}_{p k}(1)\right)$
\approx means indistinguishable by efficient algorithms

Homomorphic Encryption (HE)

- $H=\{$ KeyGen, Enc, Dec, Eval $\}$
$c^{*} \leftarrow \operatorname{Eval}_{p k}(f, \boldsymbol{c})$
- Homomorphic: $\operatorname{Dec}_{\mathrm{sk}}\left(\operatorname{Eval}_{\mathrm{pk}}\left(f, \mathrm{Enc}_{\mathrm{pk}}(x)\right)\right)=f(x)$
- c^{*} may not look like a "fresh" ciphertext
- As long as it decrypts to $f(x)$
- Compact: Decrypting c^{*} easier than computing f
- Otherwise we could use $\operatorname{Eval}_{p k}(f, \boldsymbol{c})=(f, \boldsymbol{c})$ and $\operatorname{Dec}_{s k}(f, \boldsymbol{c})=f\left(\operatorname{Dec}_{s k}(\boldsymbol{c})\right)$
- Technically, $\left|c^{*}\right|$ independent of the complexity of f

Fully Homomorphic Encryption

- First plausible candidate in [Gen'09]
- Security from hard problems in ideal lattices
- Polynomially slower than computing in the clear
- Big polynomial though
- Many advances since
- Other hardness assumptions
- LWE, RLWE, NTRU, approximate-GCD
- More efficient
- Other "Advanced properties"
© Multi-key, Identity-based, ...

This Talk

- Regev-like somewhat-homomorphic encryption
- Adding homomorphism to [Reg'05] cryptosystem
- Security based on LWE, Ring-LWE
- Based on [BV'11, BGV'12, B'12]
- Bootstrapping to get FHE [Gen’09]
- Packed ciphertexts for efficiency
- Based on [SV'11, BGV'12, GHS'12]
- Not in this talk: a new LWE-based scheme
- [Gentry-Sahai-Waters CRYPTO 2013]

Learning with Errors [Reg’05]

Many equivalent forms, this is one of them:

- Parameters: q (modulus), n (dimension)
- Secret: a random short vector $s \in Z_{q}^{n}$
- Input: many pairs $\left(\boldsymbol{a}_{\boldsymbol{i}}, b_{i}\right)$
$\boldsymbol{a}_{i} \in Z_{q}^{n}$ is random, $b_{i}=\left\langle\boldsymbol{s}, \boldsymbol{a}_{i}\right\rangle+e_{i}(\bmod q)$
${ }^{-1} e_{i}$ is short
- Goal: find the secret \boldsymbol{s}
© Or distinguish ($\boldsymbol{a}_{i}, b_{i}$) from random in Z_{q}^{n+1}
[Regev'05, Peikert'09]: As hard as some worst-case lattice problems in $\operatorname{dim} n$ (for certain range of params)

Regev's Cryptosystem [Reg’05]

- The shared-key variant (enough for us)
- Secret key: vector \boldsymbol{s}^{\prime}, denote $\boldsymbol{s}=\left(\boldsymbol{s}^{\prime}, \mathbf{1}\right)$
- Encrypt $(\sigma \in\{0,1\})$
- $\boldsymbol{c}=(\boldsymbol{a}, b)$ s.t. $b=\sigma \frac{q}{2}-\left\langle s^{\prime}, \boldsymbol{a}\right\rangle+e(\bmod q)$
- Convenient to write $\langle\boldsymbol{s}, \boldsymbol{c}\rangle=\sigma \frac{q}{2}+e(\bmod q)$
- Decrypt(s, c)
- Output 0 if $|\langle s, \boldsymbol{c}\rangle \bmod \mathrm{q}| \leq q / 4$, else output 1
- Correct decryption as long as error $<q / 4$

Security: If LWE is hard, cipehrtext is pseudorandom

Additive Homomorphism

- If $\left\langle\boldsymbol{s}, \boldsymbol{c}_{i}\right\rangle \approx \sigma_{i} \frac{q}{2}(\bmod q)$ then
$\left\langle\boldsymbol{s}, \boldsymbol{c}_{1}+\boldsymbol{c}_{2}\right\rangle \approx\left(\sigma_{1} \oplus \sigma_{2}\right) \frac{q}{2}(\bmod q)$
- Error doubles on addition
- Correct decryption as long as the error $<q / 4$

How to Multiply [BV'11, B'12]

- Step 1: Tensor Product
- If $\left\langle\boldsymbol{s}, \boldsymbol{c}_{i}\right\rangle \approx \sigma_{i} \frac{q}{2}(\bmod \mathrm{q})$ and \boldsymbol{s} is small $(|\boldsymbol{s}| \ll q)$
then $\left\langle\boldsymbol{s} \otimes \boldsymbol{s}, \boldsymbol{c}_{1} \otimes \boldsymbol{c}_{2}\right\rangle \approx \sigma_{1} \sigma_{2} \frac{q^{2}}{4}\left(\bmod q^{2}\right)$
- Error has extra additive terms of size $\approx|s| \cdot q \ll q^{2}$
© So $\boldsymbol{c}^{*}=\operatorname{round}\left(\left(\boldsymbol{c}_{1} \otimes \boldsymbol{c}_{2}\right) / \frac{q}{2}\right)$ encrypts $\sigma_{1} \sigma_{2}$ relative to secret key $\boldsymbol{s}^{*}=(\boldsymbol{s} \otimes \boldsymbol{s})$
θ Rounding adds another small additive error
- But the dimension squares on multiply

How to Multiply [BV'11, $\mathrm{B}^{\prime} 12$]

- Step 2: Dimension Reduction
- Publish "key-switching gadget" to ranslate \boldsymbol{c}^{*} wrt $\boldsymbol{s}^{*} \rightarrow \boldsymbol{c}$ wrt \boldsymbol{s}
- Essentially an encryption of \boldsymbol{s}^{*} under \boldsymbol{s}
- $n \times n^{2}$ rational matrix W s.t. $s^{T} \times W \approx s^{*}(\bmod q)$
\ominus Given \boldsymbol{c}^{*}, compute $\mathbf{c} \leftarrow \operatorname{Round}\left(W \times \boldsymbol{c}^{*}\right)(\bmod q)$
$\theta\langle s, c\rangle \approx s^{T} \times W \times c^{*} \approx\left\langle s^{*}, c^{*}\right\rangle \approx \sigma \frac{q}{2}(\bmod q)$
- Some extra work to keep error from growing too much
- Still secure under reasonable hardness assumptions

Somewhat Homomorphic Encryption

- Error doubles on addition, grows by poly(n) factor on multiplication (e.g., n^{2} factor)
- When computing a depth- d circuit we have |output-error| \leq |input-error $\mid \cdot n^{2 d}$
- Setting parameters:
- Start from |input-error| $\leq n^{d}$ (say)
- Set $q>4 n^{d} \cdot n^{2 d}=4 n^{3 d}$
- Set the dimension large enough to get security
- |output-error| < $q / 4$, so no decryption errors

FHE via Bootstrapping [Gen’09]

- So far, circuits of pre-determined depth

$$
\mathrm{C}\left(x_{1}, x_{2}, \ldots, x_{t}\right)
$$

FHE via Bootstrapping [Gen’09]

- So far, circuits of pre-determined depth


```
C}(\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{t}{}
```

- Can eval $y=C\left(x_{1}, x_{2} \ldots, x_{n}\right)$ when x_{i}^{\prime} 's are "fresh"
- But y is an "evaluated ciphertext"
- Can still be decrypted
- But eval $C^{\prime}(y)$ will increase noise too much

FHE via Bootstrapping [Gen’09]

- So far, circuits of pre-determined depth

$$
\begin{aligned}
& \frac{x_{1}}{X_{2}} \\
& \cdots \\
& \ldots \\
& x_{t}
\end{aligned}
$$

- Bootstrapping to handle deeper circuits
- We have a noisy evaluated ciphertext y
- Want to get another y with less noise

FHE via Bootstrapping [Gen’09]

- For ciphertext c, consider $\mathbf{D}_{c}(s k)=\operatorname{Dec}_{s k}(c)$
- Hope: $\mathrm{D}_{c}(*)$ is a low-depth circuit (on input $s k$)
- Include in the public key also $\mathrm{Enc}_{p k}(s k)$

Requires
"circular security"

$$
\begin{array}{c|}
c^{\prime} \\
\hline \mathrm{D}_{c}(s k) \\
\hline=\operatorname{Dec}_{s k}(c)=y \\
\hline
\end{array}
$$

- Homomorphic computation applied only to the "fresh" encryption of $s k$

FHE via Bootstrapping [Gen’09]

- Similarly define $\mathbf{M}_{c_{1}, c_{2}}(s k)=\operatorname{Dec}_{s k}\left(c_{1}\right) \cdot \operatorname{Dec}_{s k}\left(c_{1}\right)$

- Homomorphic computation applied only to the "fresh" encryption of $s k$

(In)Efficiency of This Scheme

- The LWE-based somewhat-homomorphic scheme has depth- $\widetilde{O}(\log q n)$ decryption circuit
- To get FHE need modulus $q \geq 2^{\text {polylog(k) }}$ and dimension $\mathrm{n} \geq \widetilde{\Omega}(k)$
$\bullet k$ is the security parameter
- The ciphertext-size is $\widetilde{\Omega}(k)$ bits
- Key-switching matrix is of size $\widetilde{\Omega}\left(k^{3}\right)$ bits
\rightarrow Each multiplication takes at least $\widetilde{\Omega}\left(k^{3}\right)$ times
$\rightarrow \widetilde{\Omega}\left(k^{3}\right)$ slowdown vs. computing in the clear

Better Efficiency with Ring-LWE

- Replace Z by $\mathrm{Z}[\mathrm{X}] / \mathrm{F}(\mathrm{X})$
- F is a degree-d polynomial with $d=\widetilde{\Theta}(k)$
- Can get security with lower dimension
- $n=\widetilde{\Theta}(k / d)$, as low as $n=2$
- The ciphertext-size still $\widetilde{\Omega}(k)$ bits
- But key-switching matrix size only $\widetilde{\Theta}(k)$ bits
- It includes $n^{2} \times n=8$ ring elements
$\rightarrow \widetilde{\Theta}(k)$ slowdown vs. computing in the clear

Ciphertext Packing

- Cannot reduce ciphertext size below $\widetilde{\Theta}(k)$
- But we can pack more bits in each ciphertext
- Recall decryption: ptxt $\leftarrow M S B(\langle\boldsymbol{s}, \boldsymbol{c}\rangle \bmod q)$
- $p t x t$ is a polynomial in $\mathrm{R}_{2}=Z[X] /(F(X), 2)$
- Use cyclotomic rings, $F(X)=\Phi_{m}(X)$
- Use CRT in R_{2} to pack many bits inside m
- The cryptosystem remains unchanged
- Encoding/decoding of bits inside plaintext polys

Plaintext Algebra

- $\Phi_{m}(X)$ irreducible over Z, but not $\bmod 2$
- $\Phi_{m}(X) \equiv \prod_{j=1}^{\ell} F_{j}(X)(\bmod 2)$
- F_{j} 's are irreducible, all have the same degree d
θ degree d is the order of 2 in Z_{m}^{*}
- For some m's we can get $\ell=\frac{\phi(m)}{d}=\Omega\left(\frac{\mathrm{m}}{\log \mathrm{m}}\right)$
- $\mathrm{R}_{2}=Z_{2}[X] / \Phi_{m}$ is a direct sum, $\mathrm{R}_{2}=\oplus_{j} R_{2, j}$
- $R_{2, j}=Z_{2}[X] / F_{j}(X) \cong G F\left(2^{d}\right)$
- 1-1 mapping $a \in R_{2} \leftrightarrow\left[\alpha_{1}, \ldots, \alpha_{\ell}\right] \in G F\left(2^{d}\right)^{\ell}$

Plaintext Slots

- Plaintext $a \in R_{2}$ encodes ℓ values $\alpha_{j} \in G F\left(2^{d}\right)$
- To embed plaintext bits, use $a_{\mathrm{j}} \in G F(2) \subset G F\left(2^{d}\right)$
- Ops,$+ \times$ in R_{2} work independently on the slots
- ℓ-ADD: $a+a^{\prime} \cong\left[\alpha_{1}+\alpha_{1}^{\prime}, \ldots, \alpha_{\ell}+\alpha_{\ell}^{\prime}\right]$
- ℓ-MUL: $a \times a^{\prime} \cong\left[\alpha_{1} \times \alpha_{1}^{\prime}, \ldots, \alpha_{\ell} \times \alpha_{\ell}^{\prime}\right]$
- If $\ell=\widetilde{\Omega}(k)$ then our $\widetilde{\Theta}(k)$-bit ciphertext can hold $\widetilde{\Omega}(k)$ plaintext bits
- Ciphertext-expansion ratio only polylog(k)

Aside: an ℓ-SELECT Operation

- We will use this later

Homomorphic SIMD [SV'11]

- SIMD = Single Instruction Multiple Data
- Computing the same function on ℓ inputs at the price of one computation
- Overhead only polylog(k)
- Pack the inputs into the slots
- Bit-slice, inputs to j'th instance go in j'th slots
- Compute the function once
- After decryption, decode the ℓ output bits from the output plaintext polynomial

Beyond SIMD Computation

- To reduce overhead for a single computation:
- Pack all input bits in just a few ciphertexts
- Compute while keeping everything packed
- How to do this?

So you want to compute some function...

So you want to compute some function using SIMD...

Routing Values Between Levels

- We need to map this

| \mathbf{x}_{1} | \mathbf{x}_{2} | \mathbf{x}_{3} | \mathbf{x}_{4} | \mathbf{x}_{5} | 0 | \mathbf{x}_{7} | \mathbf{x}_{8} | \mathbf{x}_{9} | \mathbf{x}_{10} | \mathbf{x}_{11} | \mathbf{x}_{12} | 1 | \mathbf{x}_{14} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{x}_{15} | \mathbf{x}_{16} | \mathbf{x}_{17} | \mathbf{x}_{18} | \mathbf{x}_{19} | $\mathbf{1}$ | \mathbf{x}_{21} | \mathbf{x}_{22} | \mathbf{x}_{23} | \mathbf{x}_{24} | \mathbf{x}_{25} | \mathbf{x}_{26} | | |

- Into that ... so we can use ℓ-add

- Is there a natural operation on polynomials that moves values between slots?

Using Automorphisms

- The operation $\kappa_{t}: a(X) \mapsto a\left(X^{t}\right) \in R_{2}$
- Under some conditions on m, exists $t \in Z_{m}^{*}$ s.t.,
(-) For any $a \in R_{2}$ encoding $a \leftrightarrow\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}\right]$,

$$
\kappa_{t}(a) \leftrightarrow\left[\alpha_{2}, \ldots, \alpha_{\ell}, \alpha_{1}\right]
$$

- t is a generator of $Z_{m}^{*} /(2)$ (if it exists)
- Once we have rotations, we can get every permutation on the plaintext slots
\ominus Using only $O(\log \ell)$ shifts and SELECTs [GHS'12]
- How to implement κ_{t} homomorphically?

Homomorphic Automorphism

- Recall decryption via inner product $\langle\boldsymbol{s}, \boldsymbol{c}\rangle \in R_{q}$
- If $a(X)=\langle s(X), \boldsymbol{c}(X)\rangle \bmod \left(\Phi_{m}(X), q\right)$ then also

$$
a\left(X^{t}\right)=\left\langle\boldsymbol{s}\left(X^{t}\right), \boldsymbol{c}\left(X^{t}\right)\right\rangle \bmod \left(\Phi_{m}\left(X^{t}\right), q\right)
$$

- Since $\Phi_{m}(X) \mid \Phi_{m}\left(X^{t}\right)$ for any $t \in Z_{m}^{*}$, then also

$$
a\left(X^{t}\right)=\left\langle s\left(X^{t}\right), c\left(X^{t}\right)\right\rangle \bmod \left(\Phi_{m}(X), q\right)
$$

- Therefore $\boldsymbol{c}^{\prime}=\kappa_{t}(\boldsymbol{c})$ is an encryption of $a^{\prime}=\kappa_{t}(a)$ relative to key $\boldsymbol{s}^{\prime}=\kappa_{t}(\boldsymbol{s})$
- Can publish key-switching matrix $W\left[\boldsymbol{s}^{\prime} \rightarrow \boldsymbol{s}\right]$ to get back an encryption relative to \boldsymbol{S}

Summary of RLWE HE encryption

- Native plaintext space $\mathrm{R}_{2}=Z_{2}[X] / \Phi_{m}$
- $a \in R_{2}$ used to pack ℓ values $\alpha_{j} \in G F\left(2^{d}\right)$
- sk is $s \in R_{q}$, ctxt is a pair $\left(c_{0}, c_{1}\right) \in R_{q}^{2}$
- Decryption is $a:=\operatorname{MSB}\left(\left\langle\left(c_{0}, c_{1}\right),(s, 1)\right\rangle\right)$
- Inner product over R_{q}
- Homomorphic addition, multiplication work element-size on the α_{j} 's
- Homomorphic automorphism to move α_{j} 's between the slots

