

Shai Halevi ― IBM
August 2013

I want to delegate processing of my data,
without giving away access to it.

Client Server/Cloud

(Input: x) (Function: f)

“I want to delegate the computation to the cloud”
“I want to delegate the computation to the cloud,

but the cloud shouldn’t see my input”

Enc[f(x)]

Enc(x) f

Example: RSA_encrypt(e,N)(x) = xe mod N

x1
e x x2

e = (x1 x x2) e mod N

“Somewhat Homomorphic”: can compute some
functions on encrypted data, but not all

Plaintext space P Ciphertext space C

x1 x2
ci Enc(xi) c1 c2

* #

y d

y Dec(d)

• Rivest-Adelman-Dertouzos 1978

Encryption for which we can compute arbitrary
functions on the encrypted data

Enc(f(x))

Enc(x) Eval f

An encryption scheme: (KeyGen, Enc, Dec)

Plaintext-space = {0,1}

(pk,sk) KeyGen($), cEncpk(b), bDecsk(c)

Semantic security [GM’84]:
 (pk, Encpk(0)) (pk, Encpk(1))

 means indistinguishable by efficient algorithms

6

H = {KeyGen, Enc, Dec, Eval}
 c* Evalpk(f, c)

Homomorphic: Decsk(Evalpk(f, Encpk(x))) = f(x)

c* may not look like a “fresh” ciphertext

As long as it decrypts to f(x)

Compact: Decrypting c* easier than computing f

Otherwise we could use Evalpk (f, c)=(f, c) and
Decsk(f, c) = f(Decsk(c))

Technically, |c*| independent of the complexity of f

7

c*

First plausible candidate in [Gen’09]

Security from hard problems in ideal lattices

Polynomially slower than computing in the clear

Big polynomial though

Many advances since

Other hardness assumptions

LWE, RLWE, NTRU, approximate-GCD

More efficient

Other “Advanced properties”

Multi-key, Identity-based, …
8

Regev-like somewhat-homomorphic encryption

Adding homomorphism to [Reg’05] cryptosystem

Security based on LWE, Ring-LWE

Based on [BV’11, BGV’12, B’12]

Bootstrapping to get FHE [Gen’09]

Packed ciphertexts for efficiency

Based on [SV’11, BGV’12, GHS’12]

Not in this talk: a new LWE-based scheme

[Gentry-Sahai-Waters CRYPTO 2013]

9

Many equivalent forms, this is one of them:

Parameters: 𝑞 (modulus), 𝑛 (dimension)

Secret: a random short vector 𝒔 ∈ 𝑍𝑞
𝑛

Input: many pairs (𝒂𝒊, 𝑏𝑖)
𝒂𝑖 ∈ 𝑍𝑞

𝑛 is random, 𝑏𝑖 = 𝒔, 𝒂𝑖 + 𝑒𝑖 (𝑚𝑜𝑑 𝑞)
𝑒𝑖 is short

Goal: find the secret 𝒔

Or distinguish (𝒂𝑖 , 𝑏𝑖) from random in 𝑍𝑞
𝑛+1

[Regev’05, Peikert’09]: As hard as some worst-case
lattice problems in dim n (for certain range of params)

The shared-key variant (enough for us)

Secret key: vector 𝒔′

Encrypt 𝜎 ∈ {0,1}

𝒄 = (𝒂, 𝑏) s.t. 𝑏 = 𝜎
𝑞

2
− 𝒔′, 𝒂 + 𝑒 (𝑚𝑜𝑑 𝑞)

Convenient to write 𝒔, 𝒄 = 𝜎
𝑞

2
+ 𝑒 (𝑚𝑜𝑑 𝑞)

Decrypt(𝒔, 𝒄)

Output 0 if | 𝒔, 𝒄 mod q|≤ 𝑞/4, else output 1

Correct decryption as long as error < 𝑞/4

Security: If LWE is hard, cipehrtext is pseudorandom

, denote 𝒔 = 𝒔′, 𝟏

If 𝒔, 𝒄𝑖 ≈ 𝜎𝑖
𝑞

2
 (mod q) then

 𝒔, 𝒄𝟏 + 𝒄2 ≈ (𝜎1⊕𝜎2)
𝑞

2
 (mod q)

Error doubles on addition

Correct decryption as long as the error < 𝑞/4

12

Step 1: Tensor Product

If 𝒔, 𝒄𝑖 ≈ 𝜎𝑖
𝑞

2
 (mod q) and s is small (|𝒔| ≪ 𝑞)

then 𝒔⊗ 𝒔, 𝒄1 ⊗ 𝒄2 ≈ 𝜎1𝜎2
𝑞2

4
 (mod 𝑞2)

Error has extra additive terms of size ≈ 𝑠 ⋅ 𝑞 ≪ 𝑞2

So 𝒄∗ = 𝑟𝑜𝑢𝑛𝑑((𝒄1 ⊗𝒄2)/
𝑞

2
) encrypts 𝜎1𝜎2

relative to secret key 𝒔∗ = (𝒔⊗ 𝒔)

Rounding adds another small additive error

But the dimension squares on multiply

Step 2: Dimension Reduction

Publish “key-switching gadget” to ranslate
𝒄∗ wrt 𝒔∗ 𝒄 wrt 𝒔

Essentially an encryption of 𝒔∗ under 𝒔

𝑛 × 𝑛2 rational matrix W s.t. 𝒔𝑻 ×𝑊 ≈ 𝒔∗(𝑚𝑜𝑑 𝑞)

Given 𝒄∗, compute 𝐜 ← Round 𝑊 × 𝒄∗ (𝑚𝑜𝑑 𝑞)

𝒔, 𝒄 ≈ 𝒔𝑻 ×𝑊 × 𝒄∗ ≈ 𝒔∗, 𝒄∗ ≈ 𝜎
𝑞

2
 (𝑚𝑜𝑑 𝑞)

Some extra work to keep error from growing too much

Still secure under reasonable hardness assumptions

Error doubles on addition, grows by poly(n)
factor on multiplication (e.g., 𝑛2 factor)

When computing a depth-𝑑 circuit we have
|output-error| ≤ |input-error| ⋅ 𝑛2𝑑

Setting parameters:

Start from |input-error| ≤ 𝑛𝑑 (say)

Set 𝑞 > 4𝑛𝑑 ⋅ 𝑛2𝑑 = 4𝑛3𝑑

Set the dimension large enough to get security

|output-error| < 𝑞/4, so no decryption errors

15

16

C(x1, x2 ,…, xt)

x1

…

x2

xt

C

So far, circuits of pre-determined depth

So far, circuits of pre-determined depth

Can eval y=C(x1,x2…,xn) when xi’s are “fresh”

But y is an “evaluated ciphertext”

Can still be decrypted

But eval C’(y) will increase noise too much

17

x1

…

x2

xt

C

C(x1, x2 ,…, xt)

So far, circuits of pre-determined depth

Bootstrapping to handle deeper circuits

We have a noisy evaluated ciphertext y

Want to get another y with less noise

18

x1

…

x2

xt

C

C(x1, x2 ,…, xt)

For ciphertext c, consider Dc(sk) = Decsk(c)

Hope: Dc(*) is a low-depth circuit (on input sk)

Include in the public key also Encpk(sk)

Homomorphic computation applied only to the
“fresh” encryption of sk

19

Dc

y

sk1

sk2

skn

…

c

Dc(sk)

= Decsk(c) = y

c’

Requires
“circular
security”

sk1

sk2

skn

…

Similarly define Mc1,c2(sk) = Decsk(c1)∙Decsk(c1)

Homomorphic computation applied only to the
“fresh” encryption of sk

20

Mc1,c2

y2

sk1

sk2

skn

…

c2

Mc1,c2(sk)

= Decsk(c1) x Decsk(c2) = y1 x y2

c’

y1
c1

sk1

sk2

skn

…

The LWE-based somewhat-homomorphic
scheme has depth-𝑂 (log 𝑞𝑛) decryption circuit

To get FHE need modulus 𝑞 ≥ 2𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑘) and
dimension n ≥ Ω (𝑘)

𝑘 is the security parameter

The ciphertext-size is Ω (𝑘) bits

Key-switching matrix is of size Ω (𝑘3) bits

 Each multiplication takes at least Ω (𝑘3) times

 Ω (𝑘3) slowdown vs. computing in the clear

21

Replace Z by Z[X]/F(X)

F is a degree-d polynomial with 𝑑 = Θ (𝑘)

Can get security with lower dimension

𝑛 = Θ 𝑘/𝑑 , as low as 𝑛 = 2

The ciphertext-size still Ω (𝑘) bits

But key-switching matrix size only Θ (𝑘) bits

It includes 𝑛2 × 𝑛 = 8 ring elements

 Θ (𝑘) slowdown vs. computing in the clear

22

Cannot reduce ciphertext size below Θ (𝑘)

But we can pack more bits in each ciphertext

Recall decryption: 𝑝𝑡𝑥𝑡 ← 𝑀𝑆𝐵(⟨𝒔, 𝒄⟩ 𝑚𝑜𝑑 𝑞)

𝑝𝑡𝑥𝑡 is a polynomial in R2 = 𝑍 𝑋 /(𝐹 𝑋 , 2)

Use cyclotomic rings, 𝐹 𝑋 = Φ𝑚 𝑋

Use CRT in 𝑅2 to pack many bits inside m

The cryptosystem remains unchanged

Encoding/decoding of bits inside plaintext polys

23

Φ𝑚(𝑋) irreducible over Z, but not mod 2

Φ𝑚 𝑋 ≡ ∏𝑗=1
ℓ 𝐹𝑗 𝑋 (mod 2)

Fj’s are irreducible, all have the same degree d
degree d is the order of 2 in 𝑍𝑚

∗

For some m’s we can get ℓ =
𝜙 𝑚

𝑑
= Ω(

m

log m
)

R2 = 𝑍2 𝑋 /Φ𝑚 is a direct sum, R2 = ⊕𝑗 𝑅2,𝑗

𝑅2,𝑗 = 𝑍2 𝑋 /𝐹𝑗 𝑋 ≅ 𝐺𝐹(2𝑑)

1-1 mapping 𝑎 ∈ 𝑅2 ↔ 𝛼1, … , 𝛼ℓ ∈ 𝐺𝐹 2𝑑
ℓ

Plaintext 𝑎 ∈ 𝑅2 encodes ℓ values 𝛼𝑗 ∈ 𝐺𝐹(2𝑑)

To embed plaintext bits, use 𝑎j ∈ 𝐺𝐹 2 ⊂ 𝐺𝐹(2𝑑)

Ops +, in 𝑅2 work independently on the slots

ℓ-ADD: 𝑎 + 𝑎′ ≅ 𝛼1 + 𝛼1
′ , … , 𝛼ℓ + 𝛼ℓ

′

ℓ-MUL: 𝑎 × 𝑎′ ≅ 𝛼1 × 𝛼1
′ , … , 𝛼ℓ × 𝛼ℓ

′

If ℓ = Ω (𝑘) then our Θ (𝑘)-bit ciphertext can
hold Ω (𝑘) plaintext bits

Ciphertext-expansion ratio only polylog(k)

We will use this later

1 0 0 1 0 1 0

x1 x2 x3 x4 x5 x6 x7

x8 x9 x10 x11 x12 x13 x14

0 1 1 0 1 0 1

x1 0 0 x4 0 x6 0

0 x9 x10 0 x12 0 x14

x

x

=

=

+

x1 x9 x10 x4 x12 x6 x14

SIMD = Single Instruction Multiple Data

Computing the same function on ℓ inputs at the
price of one computation

Overhead only polylog(k)

Pack the inputs into the slots
Bit-slice, inputs to j’th instance go in j‘th slots

Compute the function once

After decryption, decode the ℓ output bits from
the output plaintext polynomial

To reduce overhead for a single computation:
Pack all input bits in just a few ciphertexts

Compute while keeping everything packed

How to do this?

August 15, 2013 28

+ + + + + + + + + + + + +

×

×

×

×

×

×

×

×

×

×

×

+ + + + + + + + +

0 1 1

1

1

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x21 x22 x23 x24 x25 x26

Input
bits

x1 x2 x3 x4 x5 x7 x8 x9 x10 x11 x12 x14 x15 x16 x17 x18 x19 x21 x22 x23 x24 x25 x26

x15 x16 x17 x18 x19 x21 x8 x9 x10 x11 x12 x14 x1 x2 x3 x4 x5 x7 x22 x23 x24 x25 x26

Input
bits

+ + + + + + + + + + + + +

×

×

×

×

×

×

×

×

×

×

×

+ + + + + + + + +

0 1 1

1

1

We need to map this

Into that

Is there a natural operation on polynomials that
moves values between slots?

x15 x16 x17 x18 x19 1 x21

x8 x9 x10 x11 x12 1 x14 x1 x2 x3 x4 x5 0 x7

x22 x23 x24 x25 x26

x15 x17 x19 x21 x23 x25

x2 x4 0 x8 x10 x12 x14

x1 x3 x5 x7 x9 x11 1

x16 x18 1 x22 x24 x26

+ + + + + + + + + + + + +

… so we can use ℓ-add

The operation 𝜅𝑡: 𝑎 𝑋 ↦ 𝑎 𝑋𝑡 ∈ 𝑅2

Under some conditions on m, exists 𝑡 ∈ 𝑍𝑚
∗ s.t.,

For any 𝑎 ∈ 𝑅2 encoding 𝑎 ↔ 𝛼1, 𝛼2, … , 𝛼ℓ ,
𝜅𝑡(𝑎) ↔ 𝛼2, … , 𝛼ℓ, 𝛼1

t is a generator of 𝑍𝑚
∗ /(2) (if it exists)

Once we have rotations, we can get every
permutation on the plaintext slots

Using only 𝑂(log ℓ) shifts and SELECTs [GHS’12]

How to implement 𝜅𝑡 homomorphically?

August 15, 2013 32

Recall decryption via inner product 𝒔, 𝒄 ∈ 𝑅𝑞

If 𝑎 𝑋 = 𝒔(𝑋), 𝒄(𝑋) 𝑚𝑜𝑑 Φ𝑚 𝑋 , 𝑞 then also
𝑎 𝑋𝑡 = 𝒔(𝑋𝑡), 𝒄(𝑋𝑡) 𝑚𝑜𝑑 Φ𝑚 𝑋𝑡 , 𝑞

Since Φ𝑚 𝑋 |Φ𝑚 𝑋𝑡 for any 𝑡 ∈ 𝑍𝑚
∗ , then also

𝑎 𝑋𝑡 = 𝒔(𝑋𝑡), 𝒄(𝑋𝑡) 𝑚𝑜𝑑 Φ𝑚 𝑋 , 𝑞

Therefore 𝒄′ = 𝜅𝑡(𝒄) is an encryption of
𝑎′ = 𝜅𝑡(𝑎) relative to key 𝒔′ = 𝜅𝑡(𝒔)

Can publish key-switching matrix 𝑊[𝒔′ → 𝒔] to
get back an encryption relative to 𝒔

August 15, 2013 33

Native plaintext space R2 = 𝑍2 𝑋 /Φ𝑚

𝑎 ∈ 𝑅2 used to pack ℓ values 𝛼𝑗 ∈ 𝐺𝐹(2𝑑)

sk is 𝑠 ∈ 𝑅𝑞, ctxt is a pair 𝑐0, 𝑐1 ∈ 𝑅𝑞
2

Decryption is 𝑎:= 𝑀𝑆𝐵(𝑐0, 𝑐1 , 𝑠, 1)
Inner product over 𝑅𝑞

Homomorphic addition, multiplication work
element-size on the 𝛼𝑗’s

Homomorphic automorphism to move 𝛼𝑗’s
between the slots

August 15, 2013 34

