Homomorphic Encryption Tutorial

Shai Halevi — IBM August 2013

Computing on Encrypted Data

I want to delegate <u>processing</u> of my data, without giving away <u>access</u> to it.

Outsourcing Computation

"I want to delegate the computation to the cloud, but the cloud shouldn't see my input"

Privacy Homomorphisms

Rivest-Adelman-Dertouzos 1978

Example: RSA_encrypt_(e,N)(x) = $x^e \mod N$ • $x_1^e \ge x_2^e = (x_1 \ge x_2)^e \mod N$

"Somewhat Homomorphic": can compute some functions on encrypted data, but not all

"Fully Homomorphic" Encryption

Encryption for which we can compute arbitrary functions on the encrypted data

$$\begin{array}{c|c} \mathsf{Enc}(x) & \mathsf{Eval} & f \\ \downarrow & \downarrow \\ \mathsf{Enc}(f(x)) \end{array}$$

Some Notations

An encryption scheme: (KeyGen, Enc, Dec)

- Plaintext-space = {0,1}
- Semantic security [GM'84]: $(pk, Enc_{pk}(0)) \approx (pk, Enc_{pk}(1))$

 \approx means indistinguishable by efficient algorithms

Homomorphic Encryption (HE)

- H = {KeyGen, Enc, Dec, Eval}
 - $c^* \leftarrow \operatorname{Eval}_{pk}(f, c)$
- Homomorphic: $Dec_{sk}(Eval_{pk}(f, Enc_{pk}(x))) = f(x)$
 - c^* may not look like a "fresh" ciphertext
 - Solution As long as it decrypts to f(x)
- Compact: Decrypting c^* easier than computing f
 - Otherwise we could use Eval_{pk} (f, c)=(f, c) and Dec_{sk}(f, c) = f(Dec_{sk}(c))
 - Technically, $|c^*|$ independent of the complexity of f

Fully Homomorphic Encryption

First plausible candidate in [Gen'09]

- Security from hard problems in ideal lattices
- Polynomially slower than computing in the clear
 - Big polynomial though
- Many advances since
 - Other hardness assumptions
 - LWE, RLWE, NTRU, approximate-GCD
 - More efficient
 - Other "Advanced properties"
 - Multi-key, Identity-based, ...

This Talk

Regev-like somewhat-homomorphic encryption

- Adding homomorphism to [Reg'05] cryptosystem
 - Security based on LWE, Ring-LWE
- Based on [BV'11, BGV'12, B'12]
- Bootstrapping to get FHE [Gen'09]
- Packed ciphertexts for efficiency
 - Based on [SV'11, BGV'12, GHS'12]
- Not in this talk: a new LWE-based scheme
 - Gentry-Sahai-Waters CRYPTO 2013]

Learning with Errors [Reg'05]

Many equivalent forms, this is one of them:

- Parameters: q (modulus), n (dimension)
- Secret: a random short vector $s \in Z_q^n$
- Input: many pairs (a_i, b_i)
 - *a_i* ∈ Zⁿ_q is random, *b_i* = ⟨*s*, *a_i*⟩ + *e_i* (mod q)
 e_i is short
- Goal: find the secret s
 - Or distinguish (a_i, b_i) from random in Z_q^{n+1}

[Regev'05, Peikert'09]: As hard as some worst-case lattice problems in dim *n* (for certain range of params)

Regev's Cryptosystem [Reg'05]

- The shared-key variant (enough for us)
- Secret key: vector s', denote s = (s', 1)
- Substitution Encrypt($\sigma \in \{0,1\}$)
 - $\boldsymbol{c} = (\boldsymbol{a}, b)$ s.t. $\boldsymbol{b} = \sigma \frac{q}{2} \langle \boldsymbol{s}', \boldsymbol{a} \rangle + e \pmod{q}$
 - Convenient to write $\langle s, c \rangle = \sigma \frac{q}{2} + e \pmod{q}$
- Decrypt(s, c)
 - Output 0 if $|\langle s, c \rangle$ mod q $| \leq q/4$, else output 1
- Correct decryption as long as error < q/4Security: If LWE is hard, cipehrtext is pseudorandom

Additive Homomorphism

- If $\langle \boldsymbol{s}, \boldsymbol{c}_i \rangle \approx \sigma_i \frac{q}{2} \pmod{q}$ then $\langle \boldsymbol{s}, \boldsymbol{c}_1 + \boldsymbol{c}_2 \rangle \approx (\sigma_1 \bigoplus \sigma_2) \frac{q}{2} \pmod{q}$
- Error doubles on addition
- Correct decryption as long as the error < q/4

How to Multiply [BV'11, B'12]

Step 1: Tensor Product

- If $\langle \boldsymbol{s}, \boldsymbol{c}_i \rangle \approx \sigma_i \frac{q}{2} \pmod{q}$ and \boldsymbol{s} is small ($|\boldsymbol{s}| \ll q$) then $\langle \boldsymbol{s} \otimes \boldsymbol{s}, \boldsymbol{c}_1 \otimes \boldsymbol{c}_2 \rangle \approx \sigma_1 \sigma_2 \frac{q^2}{4} \pmod{q^2}$
 - Error has extra additive terms of size $\approx |s| \cdot q \ll q^2$
- So $\mathbf{c}^* = round((\mathbf{c}_1 \otimes \mathbf{c}_2) / \frac{q}{2})$ encrypts $\sigma_1 \sigma_2$

relative to secret key $s^* = (s \otimes s)$

- Rounding adds another small additive error
- But the dimension squares on multiply

How to Multiply [BV'11, B'12]

Step 2: Dimension Reduction

- Publish "key-switching gadget" to ranslate c* wrt s* c wrt s
 - Sentially an encryption of s^* under s
- $n \times n^2$ rational matrix W s.t. $s^T \times W \approx s^* \pmod{q}$
- Given c^* , compute $c \leftarrow \text{Round}(W \times c^*) \pmod{q}$
- $\langle \boldsymbol{s}, \boldsymbol{c} \rangle \approx \boldsymbol{s}^T \times W \times \boldsymbol{c}^* \approx \langle \boldsymbol{s}^*, \boldsymbol{c}^* \rangle \approx \sigma \frac{q}{2} \pmod{q}$
 - Some extra work to keep error from growing too much
 - Still secure under reasonable hardness assumptions

Somewhat Homomorphic Encryption

- Error doubles on addition, grows by poly(n) factor on multiplication (e.g., n² factor)
 - When computing a depth-*d* circuit we have
 |output-error| ≤ |input-error| · n^{2d}
- Setting parameters:
 - Start from $|input-error| \le n^d$ (say)
 - Set $q > 4n^d \cdot n^{2d} = 4n^{3d}$
 - Set the dimension large enough to get security
- Ioutput-error < q/4, so no decryption errors

So far, circuits of pre-determined depth

 $C(x_1, x_2, ..., x_t)$

So far, circuits of pre-determined depth

 $C(x_1, x_2, ..., x_t)$

• Can eval $y=C(x_1, x_2, ..., x_n)$ when x_i 's are "fresh"

- But y is an "evaluated ciphertext"
 - Can still be decrypted

*x*₂

But eval C'(y) will increase noise too much

So far, circuits of pre-determined depth

*X*₂

x_t

- Bootstrapping to handle deeper circuits
 - We have a noisy evaluated ciphertext y
 - Want to get another y with less noise

• For ciphertext c, consider $\mathbf{D}_{c}(sk) = \text{Dec}_{sk}(c)$ Hope: $D_c(*)$ is a low-depth circuit (on input *sk*) Include in the public key also $Enc_{pk}(sk)$ Requires "circular security" *sk*₁ sk_2 D_c(sk)

Homomorphic computation applied only to the "fresh" encryption of sk

sk_n

 $= \operatorname{Dec}_{sk}(c) = y$

Similarly define $\mathbf{M}_{c_1,c_2}(sk) = \mathsf{Dec}_{sk}(c_1) \cdot \mathsf{Dec}_{sk}(c_1)$

$$c'$$

$$Mc_{1},c_{2}(sk)$$

$$= Dec_{sk}(c_{1}) \times Dec_{sk}(c_{2}) = y_{1} \times y_{2}$$

Homomorphic computation applied only to the "fresh" encryption of sk

(In)Efficiency of This Scheme

- The LWE-based somewhat-homomorphic scheme has depth-Õ(log qn) decryption circuit
- To get FHE need modulus $q \ge 2^{polylog(k)}$ and dimension $n \ge \widetilde{\Omega}(k)$
 - $\circledast k$ is the security parameter
- The ciphertext-size is $\widetilde{\Omega}(k)$ bits
- Several Key-switching matrix is of size $\widetilde{\Omega}(k^3)$ bits
 - → Each multiplication takes at least $\widetilde{\Omega}(k^3)$ times
 - $\rightarrow \widetilde{\Omega}(k^3)$ slowdown vs. computing in the clear

Better Efficiency with Ring-LWE

Replace Z by Z[X]/F(X)

F is a degree-d polynomial with $d = \widetilde{\Theta}(k)$

- Can get security with lower dimension
 - $n = \widetilde{\Theta}(k/d)$, as low as n = 2
- The ciphertext-size still $\widetilde{\Omega}(k)$ bits
- But key-switching matrix size only Θ(k) bits
 It includes n² × n = 8 ring elements
- $\rightarrow \widetilde{\Theta}(k)$ slowdown vs. computing in the clear

Ciphertext Packing

- Solution $\Theta(k)$ Solution $\Theta(k)$ Solution $\Theta(k)$
- But we can pack more bits in each ciphertext
- Recall decryption: $ptxt \leftarrow MSB(\langle s, c \rangle \mod q)$
 - ptxt is a polynomial in $R_2 = Z[X]/(F(X), 2)$
- Use cyclotomic rings, $F(X) = \Phi_m(X)$
- Solution Use CRT in R_2 to pack many bits inside m
 - The cryptosystem remains unchanged
 - Encoding/decoding of bits inside plaintext polys

Plaintext Algebra

- $\Phi_m(X)$ irreducible over Z, but not mod 2
 - $\Phi_m(X) \equiv \prod_{j=1}^{\ell} F_j(X) \pmod{2}$
 - F_i's are irreducible, all have the same degree d
 - degree d is the order of 2 in Z_m^*
 - For some m's we can get $\ell = \frac{\phi(m)}{d} = \Omega(\frac{m}{\log m})$
- $R_2 = Z_2[X]/\Phi_m$ is a direct sum, $R_2 = \bigoplus_j R_{2,j}$ • $R_{2,j} = Z_2[X]/F_j(X) \cong GF(2^d)$
- 1-1 mapping $a \in R_2 \leftrightarrow [\alpha_1, ..., \alpha_\ell] \in GF(2^d)^\ell$

Plaintext Slots

Plaintext $a \in R_2$ encodes ℓ values $\alpha_i \in GF(2^d)$ So embed plaintext bits, use $a_i \in GF(2) \subset GF(2^d)$ • Ops +, \times in R_2 work independently on the slots • ℓ -ADD: $a + a' \cong [\alpha_1 + \alpha'_1, \dots, \alpha_{\ell} + \alpha'_{\ell}]$ $\ \blacksquare \ \ell$ -MUL: $a \times a' \cong [\alpha_1 \times \alpha'_1, \dots, \alpha_\ell \times \alpha'_\ell]$ • If $\ell = \widetilde{\Omega}(k)$ then our $\widetilde{\Theta}(k)$ -bit ciphertext can hold $\widetilde{\Omega}(k)$ plaintext bits \bigcirc Ciphertext-expansion ratio only polylog(k)

Aside: an *l*-SELECT Operation

We will use this later

Homomorphic SIMD [SV'11]

- SIMD = Single Instruction Multiple Data
- Computing the same function on *l* inputs at the price of one computation
 - Overhead only polylog(k)
- Pack the inputs into the slots
 - Bit-slice, inputs to j'th instance go in j'th slots
- Compute the function once
- After decryption, decode the *l* output bits from the output plaintext polynomial

Beyond SIMD Computation

To reduce overhead for a single computation:
 Pack all input bits in just a few ciphertexts
 Compute while keeping everything packed
 How to do this?

So you want to compute some function...

So you want to compute some function using SIMD...

Routing Values Between Levels

We need to map this

Is there a natural operation on polynomials that moves values between slots?

Using Automorphisms

- The operation $\kappa_t : a(X) \mapsto a(X^t) \in R_2$
- Under some conditions on *m*, exists $t \in Z_m^*$ s.t.,
 - For any $a \in R_2$ encoding $a \leftrightarrow [\alpha_1, \alpha_2, ..., \alpha_\ell]$, $\kappa_t(a) \leftrightarrow [\alpha_2, ..., \alpha_\ell, \alpha_1]$
 - *t* is a generator of $Z_m^*/(2)$ (if it exists)
- Once we have rotations, we can get every permutation on the plaintext slots
 - Solution Using only $O(\log \ell)$ shifts and SELECTs [GHS'12]
- How to implement κ_t homomorphically?

Homomorphic Automorphism

Recall decryption via inner product $(s, c) \in R_q$

- If $a(X) = \langle \mathbf{s}(X), \mathbf{c}(X) \rangle \mod (\Phi_m(X), q)$ then also $a(X^t) = \langle \mathbf{s}(X^t), \mathbf{c}(X^t) \rangle \mod (\Phi_m(X^t), q)$
- Since $\Phi_m(X)|\Phi_m(X^t)$ for any $t \in Z_m^*$, then also $a(X^t) = \langle \mathbf{s}(X^t), \mathbf{c}(X^t) \rangle \mod (\Phi_m(X), q)$
- Therefore $c' = \kappa_t(c)$ is an encryption of $a' = \kappa_t(a)$ relative to key $s' = \kappa_t(s)$
- Can publish key-switching matrix $W[s' \rightarrow s]$ to get back an encryption relative to s

Summary of RLWE HE encryption

- Native plaintext space $R_2 = Z_2[X]/\Phi_m$
- Sk is $s \in R_q$, ctxt is a pair $(c_0, c_1) \in R_q^2$
- Decryption is $a := MSB(\langle (c_0, c_1), (s, 1) \rangle)$
 - Inner product over R_q
- Homomorphic addition, multiplication work element-size on the α_i 's
- Homomorphic automorphism to move α_j's between the slots