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Wouldn’t it be nice to be able to… 
Encrypt my data before sending to the cloud 

While still allowing the cloud to search/sort/edit/… 
this data on my behalf 

Keeping the data in the cloud in encrypted form 
Without needing to ship it back and forth to be 
decrypted 
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Wouldn’t it be nice to be able to… 
Encrypt my queries to the cloud 

While still allowing the cloud to process them 

Cloud returns encrypted answers 
that I can decrypt 
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Two parts with a 10-minute break in between 

First part quite high-level 
Lots of pictures/animations on the slides 

Covers the [Gentry 2009] blueprint 

Second part more algebraic 
Lots of formulas on the slides 

Covers newer constructions *GH’11,BV’11,BGV’11+ 
(April 2011 and on) 
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An encryption scheme: (KeyGen, Enc, Dec) 
Plaintext-space = {0,1} 

(pk,sk) KeyGen($),  cEncpk(b),  bDecsk(c) 

Semantic security *GM’84+: 
     (pk, Encpk(0))    (pk, Encpk(1)) 
 means indistinguishable by efficient algorithms 
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H = {KeyGen, Enc, Dec, Eval} 
  c*  Evalpk(f, c) 

Homomorphic: Decsk(Evalpk( f, Encpk(x))) = f(x) 
c* may not look like a “fresh” ciphertext 

As long as it decrypts to f(x) 

Compact: Decrypting c* easier than computing f 

Otherwise we could use Evalpk (f, c)=(f, c) and 
Decsk(f, c) = f(Decsk(c)) 

|c*| independent of the complexity of f 
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Some examples: 

“Raw RSA”: c  xe mod N (x  cd mod N) 
x1

e x x2
e  =  (x1 x x2) e mod N 

GM84: Enc(0)R QR, Enc(1)R QNR (in ZN*) 
Enc(b1) x Enc(b2) = Enc(b1b2) mod N 
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Plaintext space P Ciphertext space C 
x1           x2 

ci  Enc(xi) c1           c2 

* # 

y d 

y  Dec(d) 



Mult-mod-p *ElGamal’84+ 

Add-mod-N *Pallier’98+ 

Quadratic-polys mod p *BGN’06+ 

Branching programs *IP’07+ 

A different type of solution for any circuit 
*Yao’82,…+ 

Not compact, ciphertext  grows with circuit 
complexity 

Also NC1 circuits *SYY’00] 

June 16, 2011 10 



It will be really nice to have… 
Plaintext space Z2 (w/ ops +,x) 

Ciphertexts live in algebraic ring R (w/ ops +,x) 

Homomorphic for both + and x 
Enc(b1) + Enc(b2) in R = Enc(b1+ b2 mod 2) 

Enc(b1) x  Enc(b2) in R = Enc(b1 x b2 mod 2) 

Can compute any function on the encryptions 
Since every binary function is a polynomial 

Won’t get exactly this, but it’s a good motivation 
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Evaluate any function in four “easy” steps 

Step 1: Encryption from linear ECCs 
Additive homomorphism 

Step 2: ECC lives inside a ring 
Also multiplicative homomorphism 

But only for a few operations (low-degree poly’s) 

Step 3: Bootstrapping 
Few ops (but not too few)  any number of ops 

Step 4: Everything else 
“Squashing” and other fun activities 
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Error-Correcting Codes  
(not Elliptic-Curve Cryptography) 



For “random looking” codes, hard to distinguish 
close/far from code 

Many cryptosystems built on this hardness 
E.g., *McEliece’78, AD’97, GGH’97, R’03,…+   
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KeyGen: choose a “random” Code 
Secret key: “good representation” of Code 

Allows correction of “large” errors 

Public key: “bad representation” of Code 
Can generate “random code-words” 

Hard to distinguish close/far from the code 

Enc(0): a word close to Code 

Enc(1): a random word 
Far from Code  (with high probability) 
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Code determined by a secret integer p 

Codewords: multiples of p 

Good representation: p itself 

Bad representation: 
N = pq, and also many xi = pqi + ri 

Enc(0): subset-sum(xi’s)+r mod N 

r is new noise, chosen by encryptor 

Enc(1): random integer mod N 
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ri << p 

p N 



Both Enc(0), Enc(1) close to the code 
Enc(0): distance to code is even 

Enc(1): distance to code is odd 

Security unaffected when p is odd 
 

In our example of integers mod p: 
Enc(b) = 2(r+subset-sum(xi’s)) + b mod N 
  = kp + 2(r+subset-sum(ri’s))+b 

 

Dec(c) = (c mod p) mod 2 

June 16, 2011 

17 

N p 

xi = pqi + ri 

much smaller 

than p/2 

Plaintext encoded 
in the “noise” 



c1+c2 = (codeword1+codeword2) 
              + (2r1+b1)+(2r2+b2 ) 

codeword1+codeword2  Code 

(2r1+b1)+(2r2+b2 )=2(r1+r2)+b1+b2 is still small 

If 2(r1+r2)+b1+b2 < min-dist/2, then 
dist(c1+c2, Code) = 2(r1+r2)+b1+b2  
 dist(c1+c2, Code)  b1+b2 (mod 2) 

Additively-homomorphic while close to Code 
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Product in Ring of 
small elements is small 

What happens when multiplying in Ring: 
c1∙c2 = (codeword1+2r1+b1)∙(codeword2+2r2+b2) 
= codeword1∙X + Y∙codeword2 

     + (2r1+b1)∙(2r2+b2) 

If: 
codeword1∙X + Y∙codeword2  Code 

 (2r1+b1)∙(2r2+b2) < min-dist/2 

Then 
dist(c1c2, Code) = (2r1+b1)∙(2r2+b2) = b1∙b2 mod 2 
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Secret-key is p, public-key is N and the xi’s 

ci = Encpk(bi) = 2(r+subset-sum(xi’s)) + b mod N 
          = kip + 2ri+bi 

Decsk(ci) = (ci mod p) mod 2 

c1+c2 mod N = (k1p+2r1+b1)+(k2p+2r2+b2) – kqp 
          = k’p + 2(r1+r2) + (b1+b2) 

c1c2 mod N = (k1p+2r1+b1)(k2p+2r2+b2) – kqp 
        = k’p + 2(2r1r2+r1b2+r2b1)+b1b2 

Additive, multiplicative homomorphism 

As long as noise < p/2 
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We need a linear error-correcting code C 
With “good” and “bad” representations 

C  lives inside an algebraic ring R 
C  is an ideal in R 

Sum, product of small elements in R is still small 

Can find such codes in Euclidean space 
Often associated with lattices 

Then we get a “somewhat homomorphic” 
encryption, supporting low-degree polynomials 

Homomorphism while close to the code 
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[G 2009] Polynomial Rings 
Security based on hardness of “Bounded-Distance 
Decoding” in ideal lattices 

[vDGHV 2010] Integer Ring 
Security based on hardness of the “approximate-
GCD” problem 

[GHV 2010] Matrix Rings (only partial solution) 
Only qudratic polynomials, security based on 
hardness of “Learning with Errors”

[BV 2011a] Polynomial Rings 
Security based on “ring LWE” 
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P(x1, x2 ,…, xt) 

x1 

… 

x2 

xt 

P 

So far, can evaluate low-degree polynomials 



So far, can evaluate low-degree polynomials 

Can eval y=P(x1,x2…,xn) when xi’s are “fresh” 

But y is an “evaluated ciphertext” 
Can still be decrypted 

But eval Q(y) will increase noise too much 

“Somewhat Homomorphic” encryption (SWHE) 
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x1 

… 

x2 

xt 

P 

P(x1, x2 ,…, xt) 



So far, can evaluate low-degree polynomials 

Bootstrapping to handle higher degrees 
We have a noisy evaluated ciphertext y 
Want to get another y  with less noise 
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x1 

… 

x2 

xt 

P 

P(x1, x2 ,…, xt) 



For ciphertext c, consider Dc(sk) = Decsk(c) 
Hope: Dc(*) is a low-degree polynomial in sk 

Include in the public key also Encpk(sk) 

 

 

 

 
 

Homomorphic computation applied only to the 
“fresh” encryption of sk 
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Dc 

y 

sk1 

sk2 

skn 

… 

c 

Dc(sk) 

= Decsk(c)  =  y 

c’ 

Requires 
“circular 
security” 

sk1 

sk2 

skn 

… 



Similarly define Mc1,c2(sk) = Decsk(c1)∙Decsk(c1) 
 
 
 
 
 
 
 
Homomorphic computation applied only to the 
“fresh” encryption of sk 
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Mc1,c2 

y2 

sk1 

sk2 

skn 

… 

c2 

Mc1,c2(sk) 

= Decsk(c1) x Decsk(c2)  =  y1 x y2 

c’ 

y1 
c1 

sk1 

sk2 

skn 

… 



Cryptosystems from *G’09, vDGHV’10, BG’11a+ 
cannot handle their own decryption 

Tricks to “squash” the decryption procedure, 
making it low-degree 

Nontrivial, requires putting more information 
about the secret key in the public key 

Requires yet another assumption, namely hardness 
of the Sparse-Subset-Sum Problem (SSSP) 

I will not talk about squashing here 
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SWHE schemes may be reasonable 

But bootstrapping is inherently inefficient 
Homomorphic decryption for each multiplication 

Asymptotically, overhead of at least 𝑂 (𝜆3.5)  

Best implementation so far is [GH 2011a] 
Implemented a variant of [Gentry 2009] 

Public key size ~ 2GB 

Bootstrapping takes 3-30 minutes 

Similar performance also in [CMNT 2011] 
Implemented the scheme from [vDGHV’10+ 
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Bootstrapping without squashing 

Hybrid of SWHE and MHE schemes 
MHE = Multiplicative HE (e.g., Elgamal) 

Express decryption as a “restricted  
depth-3” SPS arithmetic circuit 

Switch to MHE for the middle P level 
All necessary MHE ciphertexts found in public key 

Translate back to SWHE for the top S level 
SWHE evaluates MHE decryption, not own decryption 

No need for squashing, SSSP 

+ + + + + + + + 

X X X 

+ 

+ 



FHE without squashing, security based on 
Learning-with-Errors (LWE), or ring-LWE 

Main innovation: multiplicative homomorphism 
without a ring structure 

A host of new techniques/tricks, can be used for 
further improvements 
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Hard to solve linear equations with noise 
Given: 

    decide if 
b is a random vector in Zq

m, or 

b is close to the row-space of A (distance < bq) 
b = sA + e for random s Zq

n  and random short e Zq
m 

Parameters: n (dim),   q≥poly(n) (modulus), 
b≤1/poly(n) (noise magnitude),  m = poly(n) 

*Regev’05, Peikert’09+: As hard as some worst-case  
    lattice problems in dim n (for certain range of params)  
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A  R Zq
nxm  

b   Zq
m 



mod q maps to [-q/2, q/2] 

Bit-by-bit encryption, plaintext is a bit b 

Think of it as symmetric encryption for now 

Secret-key s, ciphertext c, are vectors in Zq
n 

Simplifying convention: s1 = 1, i.e., s = (1|t) 

Decryption is b=(<s,c> mod q) mod 2 
(<s,c> mod q) is small, absolute value ≤ bq 

In other words: 
Ciphertexts are “close” to space orthogonal to s 

Plaintext encoded in parity of “distance” 
“distance” is the size of  (<s,c> mod q) 
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This is an instance of encryption from linear 
ECCs, additive homomorphism is “for free” 

As long as things remain close to the code 

But how to multiply? 
Ciphertexts are vectors, not ring elements 

Tensor product (??)  

Can decrypt M(!), s(uv)st = <s,u>·<s,v> (mod q) 

If no wraparound then 
(s(uv)st mod q) = (<s,u> mod q)·(<s,v> mod q) 

So (s(uv)st mod q) mod 2 = Decs(u)·Decs(v) 
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M = uv, Mij = ui · vj mod q 



s(uv)st is a bilinear form in s, so linear in ss 

Opening uv, ss into vectors, we get 
s(uv)st = <vec(ss),vec(uv)> 

Denote s*=vec(ss), c*=vec(uv), then: 
Decs*(c*) = (<s*,c*> mod q) mod 2 

<s*,c*> mod q is still quite small, ≤ (bq)2 << q 

We can repeat the process 
But dimension is squared, n  n2  n4  n8 … 
so can repeat only a constant number of times 
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We have an “extended ciphertext” c* with 
respect to “extended secret key” s*=vec(ss) 

Want a low-dimension ciphertext c’ with 
respect to a “standard secret key” s’ 

Maybe s’=s, maybe not 

Key idea: publish “an encryption” of s*  
under s’ to enable the translation 

Hopefully just a matrix M(s*
s’)Zq

dim(s’)x dim(s*), 
so that c’ = M·c*Zq

dim(s’) 
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Recall s’=(1|t’), so s’M= t’A+b = 2e+s*  

Let c’ = M·c*Zq
dim(s’), then mod q we have: 

    <s’,c’>  s’Mc*  <2e+s*,c*>  <s*,c*>+2<e,c*> 

If only c* was short, then 2<e,c*> was small, so 
(<2e+s*,c*> mod q) = (<s*,c*> mod q)+2<e,c*> 

Hence (<s’,c’> mod q)  (<s*,c*> mod q)  (mod 2) 

So Decs’(c’) = Decs* (c
*) 
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A R Zq
dim(t’) x dim(s*) 

b  = -t’A+(2e+s*) mod q  
M= e is short 



Want to “represent” the long vector c* by some 
short vector c’, perhaps in higher dimension 

Example: c* =(76329, 31692, 43870) 
l2-norm ~ 90000  

    represented by c’=(7,6,3,2,9,  3,1,6,9,2,  4,3,8,7,0) 
l2-norm only ~ 21 

Later we will use binary rather than decimal 

Note that we have a “linear relation”: 
𝒄∗ = 104 ∙ 𝒄′1,6,11 + ⋯+ 10 ∙ 𝒄′4,9,14 + 𝒄′5,10,15 
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Denote c*=(𝑐1
∗, … , 𝑐𝑘

∗), i.e., 𝑐𝑖
∗ is the i’th entry 

Let 𝑐𝑖𝑙
∗ …𝑐𝑖0

∗  be binary representation of 𝑐𝑖
∗ 

𝑐𝑖
∗ =  2𝑗𝑐𝑖𝑗

∗𝑙
𝑗=0  

Let bj be the vector of j’th bits bj=(𝑐1𝑗
∗ , … , 𝑐𝑘𝑗

∗ ) 

so c*=  2𝑗𝒃𝒋
𝑙
𝑗=0 , and <s*,c*>=  2𝑗 𝒔∗, 𝒃𝒋

𝑙
𝑗=0  

Let  s**=PowersOf2q(s*)= (s*|2s*|4s*|…|2ls*) mod q, 
and c**=BitDecomp(c*) = (b0|b1 |

 b2 |…| bl  ) 

Then <s**,c**>  <s*,c*> (mod q) 

c** is short (in l2-norm), it is a 0-1 vector 
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Publish the matrix M(s**
s’)Zq

dim(s’) x dim(s**) 

Given the expanded ciphertext c* 

Compute the “doubly expanded” c** 

Set c’ = M·c** mod q 

We know that <s**,c**>  <s*,c*> (mod q) 

Also <s’,c’>  <s**,c**>+2<e,c**> (mod q) 

(<s*,c*> mod q) is small and so is 2<e,c**> hence 
(<s’,c’> mod q) = (<s*,c*>+2<e,c**> mod q) 

Last equality is over the integers 

 Decs’(c’) = Decs* (c
*) 

8/17/2011 41 



Under LWE, cannot tell M(s*
s’) from random 

Even if you know s* (but not s’) 

Assuming q is odd 

Pf: if (A, r)(A, tA+e) then (2A, 2r)(2A, 2tA+2e)  

For odd q:          (2A, 2r)  (A, r),  
      (2A, 2tA+2e)  (A, tA+2e) 

 means that these distributions are identical 

We get (A, r)  (A, tA+2e)  

It follows that (A, r)(A, r+s*)(A, tA+2e+s*)  
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A 

-t’A+2e+s* 

M(s*s’)= 



(Key-size ≥linear in depth of circuits to evaluate) 
 

KeyGen: choose random s0,s1,…,sd Zq
n 

First entry in each si is 1 

Public key has matrices M0=M(0s0) 
and Mi+1=M(si

**
si+1) for i=0,1,…,d-1 

Then s0M0 = 2e0, and siMi = 2ei+𝒔𝑖−1
∗∗  

Enc(b): rR{0,1}m, cM0r + [b,0,…,0+, output (c,0) 

Dec(c,i): Recover b(<si,c> mod q) mod 2 
For level-0: <so,c>= s0M0r+ b = 2<e0,r>+b 

e0,r are short so 2 𝒆0, 𝒓 ≪ 𝑞, hence no wraparound 
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Ciphertexts in same level can be added directly 

To multiply two level-i ciphertexts (c1,i),(c2,i) 
Compute the extended c*=vec(c1c2), the 
“doubly extended” c**, and set c’Mic

** 

(c’,i+1) is a level-(i+1) ciphertext 

Semantic-security follows because: 
Under LWE, the Mi’s are pseudo-random 

If they were random then ciphertexts would have 
no information about the encrypted plaintexts 

By leftover hash lemma 
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The “noise” in a ciphertext (c,i) is <si,c> mod q 

Noise magnitude roughly doubles on addition, 
get squared on multiplication 

Can only evaluate log-depth circuits before 
the noise magnitude exceeds q 

How to evaluate deeper circuits? 
Squash & bootstrap, 

Chimeric & bootstrap, 

or an altogether new technique… 
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Converting c,s into c’,s’ s.t. for some p < q  
(<s’,c’> mod p)  (<s,c> mod q)  (mod 2)   

*BV’11b+: Use with 𝑝 ≪ 𝑞 to reduce decryption 
complexity, can bootstrap without squashing 

Modulus-switching & key-switching combined 

The resulting c’ can be decrypted, but cannot 
participate in any more homomorphic operations 

*BGV’11+ Use with 𝑝 < 𝑞 to reduce the noise, 
can compute deeper circuits w/o bootstrapping 

Roughly just by scaling, c’round(p/q ·c) 

Rounding “appropriately” 
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Let p<q  be odd integers, c,sZq
n such that  

|<s,c> mod q|< q/2 – q/p · 𝒔 1 

𝒔 1 is the l1 norm of s 

Let c’=rndc(p/q ·c), where rndc(·) rounds  
each entry up or down so that c’c (mod 2) 

 

Then (i) (<s,c‘> mod p)  (<s,c> mod q) (mod 2) 
 and (ii)|<s,c‘> mod p|≤

𝑝

𝑞
·|<s,c> mod q|+ 𝒔 1 
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s must be 

short 



Proof:  

For some k, <s,c> mod q = <s,c> - kq  [
−𝑞

2
,
𝑞

2
] 

Actually in a smaller interval 
<s,c> - kq  [ 

−𝑞

2
+
𝑞

𝑝
 𝒔 1,  

𝑞

2 - 

𝑞

𝑝
𝒔 1 ] 

Multiplying by p/q we get 
<s,

𝑝

𝑞
c> - kp  [

−𝑝

2
+ 𝒔 1,  

𝑝

2
- 𝒔 1] 

Replacing 
𝑝

𝑞
c by c’=rndc(

𝑝

𝑞
c), adds error ≤ 𝒔 1: 

<s,c’> - kp  [
−𝑝

2
, 
𝑝

2
], so <s,c’> - kp =<s,c’> mod p 

This also proves Part (ii) 
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Proof:  

We know that <s,c> mod q = <s,c> - kq and  
<s,c’> mod p = <s,c’> - kp for the same k 

Since p,q are odd then kp kq (mod 2) 

Since c’c (mod 2) then <s,c’><s,c> (mod 2) 

(<s,c‘> mod p) = <s,c’> - kp  
                         <s,c>  - kq  (mod 2) 
                        = (<s,c> mod q)  

This proves part (i) 
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If s is random in Zq
n then ||s||1 > q 

Luckily [ACPS 2009] proved that LWE is hard 
even when s is a random short vector 

chosen from the same distribution as the noise e 

So we use this distribution for the secret keys 

Alternatively, we could have used the trick with 
BitDecomp() and PowersOf2() 
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Example: q=127, p=29, c=(175,212), s=(2,3) 

<s,c> mod q = 986 – 8 x 127 = –30 

p/q ·c  (39.9, 48.4) 
To get c’c (mod 2) we round down both entries 

c’=(39,48) 

<s,c’> mod p = 222– 8 x 29 = –10 

Indeed k=8 in both cases, –10–30 (mod 2) 

The noise magnitude decreased from 30 to 10 

But the relative magnitude increased, 
10

29
>

30

127
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Start with large modulus q0, small noise 𝜂 ≪ q0 

After 1st multiplication, noise grows to ≈ 𝜂2 

Switch the modulus to q1≈q0/𝜂, 
Noise similarly reduced to ≈ 𝜂2 𝜂 = 𝜂 

After next multiplication layer, noise again grows 
to ≈ 𝜂2, switch to q2≈q1/𝜂 to reduce it back to 𝜂 

Keep switching moduli after each layer  
Setting qi+1≈qi/𝜂  

Until last modulus is too small, qd/2≤𝜂 
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Example: q0≈ 𝜂5  
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Using mod-switching Without  mod-switching 

Noise Modulus Noise Modulus 

Fresh 
ciphertexts 

𝜂 𝜂5 𝜂 𝜂5 

Level-1, 
degree=2 

𝜂 𝜂4 𝜂2 𝜂5 

Level-2, 
degree=4 

𝜂 𝜂3 𝜂4 𝜂5 

Level-3, 
degree=8 

𝜂 𝜂2 𝜂8 𝜂5 

Level-4, 
degree=16 

𝜂 𝜂 

decryption 

errors 



Use tensor-product for multiplication 

Then reduce the dimension with M(ss’) 
First need to use PowersOf2/BitDecomp 

Then reduce the noise by switching modulus 
This works if the secret key s is short 

Repeat until modulus is too small 
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d-level circuits, initial noise 𝜂 
Also τ ≜ 𝜂 ∙ poly(𝑛) is another parameter 

Set odd moduli q0,…,qd s.t. qi ≈ 𝜏d-i+1 

Key generation: 
Choose short secret siZqi

n , i=0,…,d, first entry=1 
• Set si

*=vec(sisi)Zqi
n,  𝒔𝑖

∗∗=PowersOf2qi(si
*)Zqi

ti  

Public key has M0=M(0s0)Zq0
n x t0 

and Mi=M(𝒔𝑖−1
∗∗
si)Zqi-1

n x ti-1  
The “short error vector” in Mi is eiZqi-1

ti-1  

Then s0M0 = 2e0 mod q0 and siMi = 2ei+𝒔𝑖−1
∗∗ mod qi-1 
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t0=3nlog(q0) and 
ti=n2log(qi)   



Enc, Dec, and homomorphic addition are the 
same as in the leveled SWHE 

Level-i ciphertexts are modulo qi 

To multiply two level-i ciphertexts, c1,c2: 
c*
vec(c1c2) Zqi

n,     (<si
*,c*> mod qi) b1b2(mod 2) 

c**
BitDecom(c*),        (<si

**,c**> mod qi) b1b2(mod 2) 

c’Mi+1c
** mod qi         (<si+1,c’> mod qi) b1b2(mod 2) 

c rndc’(qi+1/qi ·c’),      (<si+1,c> mod qi+1) b1b2(mod 2) 

 

Noise in c is bounded by (𝜂2+stuff)/t ≤ 𝜂  
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A leveled-FHE: 
Public-key size at least linear in circuit depth 

Can handle circuits of arbitrary polynomial depth 

Security based on LWE 
1

𝛽
≈

modulus
noise

= (poly(𝑛))
depth

 

For “interesting” circuits this is more that poly(n) 

Modulus gets smaller as we go up the circuit 
Lower levels somewhat more expensive 
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Use bootstrapping to recover large modulus 
Size of largest modulus depends on decryption 
circuit, not the circuits that we evaluate 

Can be made into “pure” FHE (non-leveled), 
need to assume circular security 

Base security on ring-LWE 
LWE over a ring other than Zq (e.g., R=Zq[x]/f(x)) 

Can use smaller dimension (e.g., dim=2) 

Large plaintext space (not just Z2) 
Must tweak the modulus-switching technique 
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Batching: pack many bits into each ciphertext 
E.g., using the Chinese Remainders Theorem 

An operation (+,x) on ciphertext acts separately on 
each the packed bits 

Combining these optimizations, can reduce the 
overhead to 𝑂 (𝜆) 

Compare to 𝑂 (𝜆3.5) for the original blueprint 
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Many new ideas are at the table now 
Still figuring out what works and what doesn’t 

Looking at recent history, we can expect more 
new ideas in the next few months/years 

Implementation efforts are underway 
Goal: get usable FHE 

At least for some applications 

My personal guess: almost at hand, 
perhaps only 2-3 years away 

Many open problems remain 
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