Homomorphic Encryption Tutorial

Shai Halevi — IBM CRYPTO 2011

Wouldn't it be nice to be able to...

- Encrypt my data before sending to the cloud
- While still allowing the cloud to search/sort/edit/... this data on my behalf
- Keeping the data in the cloud in encrypted form
 - Without needing to ship it back and forth to be decrypted

Wouldn't it be nice to be able to...

- Encrypt my queries to the cloud
- While still allowing the cloud to process them
- Cloud returns encrypted answers

that I can decrypt

A LAX	v 0
D University of California, Santa Barbara, CA	
Reverse Directions Round-Trip	Go
FIND A BUSINESS ON THE MAP	Clea
Find Restaurants, Hotels	Search

\$skj#hS28ksytA@ ...

\$kjh9*mslt@na0 &maXxjq02bflx m^00a2nm5,A4. pE.abxp3m58bsa (3saM%w,snanba nq~mD=3akm2,A Z,ltnhde83|3mz{n dewiunb4]gnbTa* kjew^bwJ^mdns0

Organization of the Tutorial

- Two parts with a 10-minute break in between
- First part quite high-level
 - Lots of pictures/animations on the slides
 - Covers the [Gentry 2009] blueprint
- Second part more algebraic
 - Lots of formulas on the slides
 - Covers newer constructions [GH'11,BV'11,BGV'11] (April 2011 and on)

Some Notations

 An encryption scheme: (KeyGen, Enc, Dec)
 Plaintext-space = {0,1}
 (pk,sk) ← KeyGen(\$), c← Enc_{pk}(b), b← Dec_{sk}(c)
 Semantic security [GM'84]: (pk, Enc_{pk}(0)) ≈ (pk, Enc_{pk}(1))
 ≈ means indistinguishable by efficient algorithms

Homomorphic Encryption (FHE)

- $H = \{ KeyGen, Enc, Dec, Eval \}$ $c^* \leftarrow Eval_{pk}(f, c)$
- Homomorphic: $Dec_{sk}(Eval_{pk}(f, Enc_{pk}(x))) = f(x)$
 - c* may not look like a "fresh" ciphertext
 - As long as it decrypts to f(x)
- Compact: Decrypting c^* easier than computing f
 - Otherwise we could use Eval_{pk} (f, c)=(f, c) and Dec_{sk}(f, c) = f(Dec_{sk}(c))
 - $|c^*|$ independent of the complexity of f

Privacy Homomorphisms [RAD78]

Some examples:

"Raw RSA": $c \leftarrow x^e \mod N \ (x \leftarrow c^d \mod N)$ $x_1^e \times x_2^e = (x_1 \times x_2)^e \mod N$ GM84: Enc(0) $\in_{\mathbb{R}} QR$, Enc(1) $\in_{\mathbb{R}} QNR$ (in Z_N^*)
Enc(b_1) \times Enc(b_2) = Enc($b_1 \oplus b_2$) mod N

More Privacy Homomorphisms

- Mult-mod-p [ElGamal'84]
- Add-mod-N [Pallier'98]
- Quadratic-polys mod p [BGN'06]
- Branching programs [IP'07]
- A different type of solution for any circuit [Yao'82,...]
 - Not compact, ciphertext grows with circuit complexity
 - Also NC1 circuits [SYY'00]

(x,+)-Homomorphic Encryption

- It will be really nice to have...
- Plaintext space Z₂ (w/ ops +,x)
- Ciphertexts live in algebraic ring R (w/ ops +,x)
- Homomorphic for both + and x
 - Enc(b_1) + Enc(b_2) in R = Enc(b_1 + b_2 mod 2)
 - Enc(b_1) x Enc(b_2) in R = Enc(b_1 x b_2 mod 2)

Can compute any function on the encryptions

- Since every binary function is a polynomial
- Won't get exactly this, but it's a good motivation

The [Gentry 2009] Blueprint

The [Gentry 2009] blueprint

Evaluate any function in four "easy" steps

- Step 1: Encryption from linear ECCs
 - Additive homomorphism
- Step 2: ECC lives inside a ring
- Error-Correcting Codes (not Elliptic-Curve Cryptography)
- Also multiplicative homomorphism
- But only for a few operations (low-degree poly's)
- Step 3: Bootstrapping
 - Few ops (but not too few) Any number of ops
- Step 4: Everything else
 - "Squashing" and other fun activities

Step 1: Encryption from Linear ECCs

For "random looking" codes, hard to distinguish close/far from code

Many cryptosystems built on this hardness
 E.g., [McEliece'78, AD'97, GGH'97, R'03,...]

Step 1: Encryption from Linear ECCs

- KeyGen: choose a "random" Code
 - Secret key: "good representation" of Code
 - Allows correction of "large" errors
 - Public key: "bad representation" of Code
 - Can generate "random code-words"
 - Hard to distinguish close/far from the code
- Enc(0): a word close to Code
- Enc(1): a random word
 - Far from Code (with high probability)

Example: Integers mod p [vDGHV 2010]

- Code determined by a secret integer p
 - Codewords: multiples of p
- Good representation: p itself
- Bad representation:
 - N = pq, and also many $x_i = pq_i + r_i$
- Enc(0): subset-sum(x_i 's)+ $r \mod N$
 - r is new noise, chosen by encryptor
- Enc(1): random integer mod N

A Different Input Encoding

 $x_i = pq_i + r_i$

Ν

Plaintext encoded

- Both Enc(0), Enc(1) close to the code
 - Enc(0): distance to code is even
 - Enc(1): distance to code is odd fin the "noise"
 - Security unaffected when p is odd
- In our example of integers mod p:
 Enc(b) = 2(r+subset-sum(x_i's)) + b mod N = κp + 2(r+subset-sum(r_i's))+b

Dec(c) =
$$(c \mod p) \mod 2$$

much smaller than p/2

Additive Homomorphism

- $c_1 + c_2 = (codeword_1 + codeword_2)$ $+(2r_1+b_1)+(2r_2+b_2)$ • codeword₁+codeword₂ \in *Code* $(2r_1+b_1)+(2r_2+b_2)=2(r_1+r_2)+b_1+b_2$ is still small • If $2(r_1+r_2)+b_1+b_2 < \min - \frac{dist}{2}$, then dist($c_1 + c_2$, Code) = $2(r_1 + r_2) + b_1 + b_2$ \rightarrow dist(c_1+c_2 , *Code*) $\equiv b_1+b_2 \pmod{2}$ Additively-homomorphic while close to Code

Step 2: Code Lives in a Ring

What happens when multiplying in Ring:

 $c_1 \cdot c_2 = (\text{codeword}_1 + 2r_1 + b_1) \cdot (\text{codeword}_2 + 2r_2 + b_2)$ = codeword_1 \cdot X + Y \cdot codeword_2 + (2r_1 + b_1) \cdot (2r_2 + b_2)

$$(2r_1 + b_1) \cdot (2r_2 + b_2) < \min - \frac{1}{2}$$

Product in **Ring** of small elements is small

Code is an *ideal*

• dist(c_1c_2 , *Code*) = $(2r_1+b_1)\cdot(2r_2+b_2) = b_1\cdot b_2 \mod 2$

If:

Then

Example: Integers mod p [vDGHV 2010] Secret-key is p, public-key is N and the $x_i'^{s_i = pq_i + r_i}$ $c_i = \text{Enc}_{pk}(b_i) = 2(r + \text{subset-sum}(x_i's)) + b \mod N$ $= k_i p + \frac{2r_i + b_i}{2r_i + b_i}$ \square Dec_{sk}(c_i) = ($c_i \mod p$) mod 2 $rac{1}{r_1+c_2} \mod N = (k_1p+2r_1+b_1)+(k_2p+2r_2+b_2)-kqp$ $= k'p + 2(r_1 + r_2) + (b_1 + b_2)$ $rac{1}{2} c_1 c_2 \mod N = (k_1 p + 2r_1 + b_1)(k_2 p + 2r_2 + b_2) - kqp$ $= k'p + 2(2r_1r_2 + r_1b_2 + r_2b_1) + b_1b_2$ Additive, multiplicative homomorphism • As long as noise < p/2

Summary Up To Now

We need a linear error-correcting code C

- With "good" and "bad" representations
- \mathcal{C} lives inside an algebraic ring R
- \odot *C* is an ideal in R
- Sum, product of small elements in R is still small
- Can find such codes in Euclidean space
 - Often associated with lattices

 Then we get a "somewhat homomorphic" encryption, supporting low-degree polynomials
 Homomorphism while close to the code

Instantiations

G 2009] Polynomial Rings

Security based on hardness of "Bounded-Distance Decoding" in ideal lattices

[vDGHV 2010] Integer Ring

- Security based on hardness of the "approximate-GCD" problem
- GHV 2010] Matrix Rings (only partial solution)
 - Only qudratic polynomials, security based on hardness of "Learning with Errors" (LWE)
- BV 2011a] Polynomial Rings
 - Security based on "ring LWE"

So far, can evaluate low-degree polynomials

 $P(x_1, x_2, ..., x_t)$

So far, can evaluate low-degree polynomials

 $P(x_1, x_2, ..., x_t)$

• Can eval $y=P(x_1,x_2,...,x_n)$ when x_i 's are "fresh"

- But y is an "evaluated ciphertext"
 - Can still be decrypted

 X_2

- But eval Q(y) will increase noise too much
- "Somewhat Homomorphic" encryption (SWHE)

*x*₁

*x*₂

So far, can evaluate low-degree polynomials

 $P(x_1, x_2, ..., x_t)$

Bootstrapping to handle higher degrees
 We have a noisy evaluated ciphertext y
 Want to get another y with less noise

Homomorphic computation applied only to the "fresh" encryption of sk

Similarly define $\mathbf{M}_{c_1,c_2}(sk) = \mathsf{Dec}_{sk}(c_1) \cdot \mathsf{Dec}_{sk}(c_1)$

$$c'$$

$$M_{c_1,c_2}(sk)$$

$$= \text{Dec}_{sk}(c_1) \times \text{Dec}_{sk}(c_2) = y_1 \times y_2$$

Homomorphic computation applied only to the "fresh" encryption of sk

Step 4: Everything Else

- Cryptosystems from [G'09, vDGHV'10, BG'11a] cannot handle their own decryption
- Tricks to "squash" the decryption procedure, making it low-degree
 - Nontrivial, requires putting more information about the secret key in the public key
 - Requires yet another assumption, namely hardness of the Sparse-Subset-Sum Problem (SSSP)
 - I will not talk about squashing here

Performance of Blueprint

- SWHE schemes may be reasonable
- But bootstrapping is inherently inefficient
 - Homomorphic decryption for each multiplication
 - Asymptotically, overhead of at least $\tilde{O}(\lambda^{3.5})$
- Best implementation so far is [GH 2011a]
 - Implemented a variant of [Gentry 2009]
 - Public key size ~ 2GB
 - Bootstrapping takes 3-30 minutes
- Similar performance also in [CMNT 2011]
 Implemented the scheme from [vDGHV'10]

Beyond the Blueprint

Chimeric HE [GH 2011b]

- Bootstrapping without squashing
 Hybrid of SWHE and MHE schemes
 - MHE = Multiplicative HE (e.g., Elgamal)
- Substitution $\Sigma = \Sigma = \Sigma = \Sigma = \Sigma = \Sigma = \Sigma$ Substitution $\Sigma = \Sigma = \Sigma = \Sigma = \Sigma = \Sigma = \Sigma = \Sigma$
- ullet Switch to MHE for the middle Π level
 - All necessary MHE ciphertexts found in public key
- Solution Translate back to SWHE for the top Σ level
 - SWHE evaluates MHE decryption, not own decryption
- No need for squashing, SSSP

[Brakerski-Vaikuntanathan 2011b]

- FHE without squashing, security based on Learning-with-Errors (LWE), or ring-LWE
- Main innovation: multiplicative homomorphism without a ring structure
- A host of new techniques/tricks, can be used for further improvements

Learning with Errors (LWE) [Regev 2005]

Hard to solve linear equations with noise

 $\in \mathbf{Z}_q^m$ Given: b $\in_{\mathsf{R}} \mathsf{Z}_q^{n \mathsf{x} m}$ Α decide if

- **b** is a random vector in \mathbf{Z}_{q}^{m} , or
- \blacksquare **b** is close to the row-space of A (distance < βq)
 - **b** = sA + e for random $s \in Z_a^n$ and random short $e \in Z_a^m$
- Parameters: n (dim), $q \ge poly(n)$ (modulus), $\beta \leq 1/poly(n)$ (noise magnitude), m = poly(n)

[Regev'05, Peikert'09]: As hard as some worst-case lattice problems in dim n (for certain range of params) 8/17/2011

The [BV'11b] Construction

- Bit-by-bit encryption, plaintext is a bit b
- Think of it as symmetric encryption for now
- Secret-key s, ciphertext c, are vectors in Zⁿ_q
 Simplifying convention: s₁ = 1, i.e., s = (1|t)
- Decryption is b=(<s,c> mod q) mod 2
 - \bigcirc (<*s*,*c*> mod q) is small, absolute value ≤ β*q*
- In other words:

mod q maps to [-q/2, q/2]

- Ciphertexts are "close" to space orthogonal to s
- Plaintext encoded in parity of "distance"
 - \bigcirc "distance" is the size of (<*s*,*c*> mod q)

Homomorphism

- This is an instance of encryption from linear ECCs, additive homomorphism is "for free"
 - As long as things remain close to the code

But how to multiply?

- Ciphertexts are vectors, not ring elements
- Tensor product (??) $\mathbf{M} = \mathbf{u} \otimes \mathbf{v}, \mathbf{M}_{ij} = u_i \cdot v_j \mod q$
 - Can decrypt M(!), $s(u \otimes v)s^{t} = \langle s, u \rangle \langle s, v \rangle \pmod{q}$
 - If no wraparound then $(s(u \otimes v)s^t \mod q) = (\langle s, u \rangle \mod q) \cdot (\langle s, v \rangle \mod q)$
 - So $(s(u \otimes v)s^t \mod q) \mod 2 = Dec_s(u) \cdot Dec_s(v)$

Multiplying More than Once?

 $s(u \otimes v)s^{t}$ is a bilinear form in s, so linear in $s \otimes s$

- Opening $u \otimes v$, $s \otimes s$ into vectors, we get $s(u \otimes v)s^{t} = \langle vec(s \otimes s), vec(u \otimes v) \rangle$
- Denote $s^* = vec(s \otimes s)$, $c^* = vec(u \otimes v)$, then:
 - Dec_{s*}(c^*) = (<s*, c^* > mod q) mod 2
 - $< < s^*, c^* > mod q$ is still quite small, $\leq (\beta q)^2 << q$
- We can repeat the process
 - But dimension is squared, $n \rightarrow n^2 \rightarrow n^4 \rightarrow n^8$...
 so can repeat only a constant number of times
Reducing the Dimension

- We have an "extended ciphertext" c* with respect to "extended secret key" s*=vec(s⊗s)
- Want a low-dimension ciphertext c' with respect to a "standard secret key" s'
 - Maybe s'=s, maybe not
- Key idea: publish "an encryption" of s* under s' to enable the translation
 - Hopefully just a matrix $M(s^* → s') \in Z_q^{\dim(s') \times \dim(s^*)}$,
 so that $c' = M \cdot c^* \in Z_q^{\dim(s')}$

An Attempt that Almost Works

• Recall s' = (1|t'), so $s' M = t' A + b = 2e + s^*$ • Let $c' = M \cdot c^* \in \mathbf{Z}_a^{\dim(s')}$, then mod q we have: $<\!\!s',\!\!c'\!\!> \equiv s' M c^* \equiv <\!\!2e \!+\!\!s^*,\!\!c^*\!\!> \equiv <\!\!s^*,\!\!c^*\!\!> \!+\!\!2<\!\!e,\!\!c^*\!\!>$ • If only c^* was short, then $2 < e, c^* >$ was small, so $(\langle 2e+s^*,c^*\rangle \mod q) = (\langle s^*,c^*\rangle \mod q) + 2\langle e,c^*\rangle$ Hence (<s',c'> mod q) = (<s*,c*> mod q) (mod 2) So $\operatorname{Dec}_{s'}(c') = \operatorname{Dec}_{s^*}(c^*)$

Can we Make c* Short?

- Want to "represent" the long vector c^{*} by some short vector c', perhaps in higher dimension
- Example: c* =(76329, 31692, 43870)
 - I₂-norm ~ 90000
 - represented by c' = (7, 6, 3, 2, 9, 3, 1, 6, 9, 2, 4, 3, 8, 7, 0)
 - l_2 -norm only ~ 21
- Later we will use binary rather than decimal
- Note that we have a "linear relation": $c^* = 10^4 \cdot c'_{1,6,11} + \dots + 10 \cdot c'_{4,9,14} + c'_{5,10,15}$

Can we Make c* Short?

• Denote $c^* = (c_1^*, \dots, c_k^*)$, i.e., c_i^* is the *i*'th entry • Let $c_{i1}^* \dots c_{i0}^*$ be binary representation of c_i^* $\circ c_i^* = \sum_{i=0}^l 2^j c_{ii}^*$ • Let b_i be the vector of j'th bits $b_i = (c_{1j}^*, \dots, c_{kj}^*)$ • so $c^* = \sum_{i=0}^l 2^j \boldsymbol{b}_i$, and $\langle s^*, c^* \rangle = \sum_{i=0}^l 2^j \langle s^*, \boldsymbol{b}_i \rangle$ • Let s^{**} =PowersOf2_q(s^{*})= ($s^{*}/2s^{*}/4s^{*}/.../2^{l}s^{*}$) mod q, and c^{**} =BitDecomp(c^{*}) = ($b_0/b_1/b_2/.../b_1$) • Then $<\!\!s^{**},\!\!c^{**}\!\!> \equiv <\!\!s^*,\!\!c^*\!\!> \pmod{q}$ • c^{**} is short (in l_2 -norm), it is a 0-1 vector

Dimension Reduction (Key-Switching)

- Publish the matrix $M(s^{**} \rightarrow s') \in Z_a^{\dim(s') \times \dim(s^{**})}$
- Given the expanded ciphertext c^*
 - Compute the "doubly expanded" c^{**}
 - Set $c' = M \cdot c^{**} \mod q$
- We know that $\langle s^{**}, c^{**} \rangle \equiv \langle s^{*}, c^{*} \rangle \pmod{q}$
- Also $<\!\!s',\!\!c'\!\!> \equiv <\!\!s^{**},\!\!c^{**}\!\!> + 2 <\!\!e,\!\!c^{**}\!\!> \pmod{q}$
- (<s*,c*> mod q) is small and so is 2<e,c**> hence (<s',c'> mod q) = (<s*,c*>+2<e,c**> mod q)

Last equality is over the integers

→ $Dec_{s'}(c') = Dec_{s*}(c^*)$

Security

 $M(s^* \rightarrow s') =$

- Under LWE, cannot tell M(s*→s') from random
 Even if you know s* (but not s')
 - Assuming q is odd
- **Pf:** if $(A, r) \approx (A, tA+e)$ then $(2A, 2r) \approx (2A, 2tA+2e)$
- For odd q: $(2A, 2r) \equiv (A, r),$ $(2A, 2tA+2e) \equiv (A, tA+2e)$
 - \cong means that these distributions are identical
- We get $(A, r) \approx (A, tA+2e)$
- It follows that $(A, r) \equiv (A, r+s^*) \approx (A, tA+2e+s^*)$

The [BV'11b] "Leveled SWHE"

(Key-size ≥linear in depth of circuits to evaluate)

- Solution Section Sect
 - Sirst entry in each s_i is 1
 - Public key has matrices $M_0 = M(0 \rightarrow s_0)$ and $M_{i+1} = M(s_i^{**} \rightarrow s_{i+1})$ for i=0,1,...,d-1

• Then $s_0 M_0 = 2e_0$, and $s_i M_i = 2e_i + s_{i-1}^{**}$

- Substitution Set in the set of the set
- $\underline{\text{Dec}(c,i)}$: Recover $b \leftarrow (\langle s_i, c \rangle \mod q) \mod 2$
 - For level-0: $< s_o, c >= s_0 M_0 r + b = 2 < e_0, r >+ b$
 - e_0, r are short so $2\langle e_0, r \rangle \ll q$, hence no wraparound

The [BV'11b] "Leveled SWHE"

- Ciphertexts in same level can be added directly
- To multiply two level-*i* ciphertexts $(c_1,i), (c_2,i)$
 - Compute the extended $c^* = \operatorname{vec}(c_1 \otimes c_2)$, the "doubly extended" c^{**} , and set $c^* \leftarrow M_i c^{**}$
 - (c',i+1) is a level-(i+1) ciphertext
- Semantic-security follows because:
 - Under LWE, the M_i 's are pseudo-random
 - If they were random then ciphertexts would have no information about the encrypted plaintexts
 - By leftover hash lemma

From SWHE to FHE

Solution The "noise" in a ciphertext (c,i) is $\langle s_i, c \rangle \mod q$

- Noise magnitude roughly doubles on addition, get squared on multiplication
- Can only evaluate log-depth circuits before the noise magnitude exceeds q
- How to evaluate deeper circuits?
 - Squash & bootstrap,
 - Chimeric & bootstrap,
 - or an altogether new technique...

Modulus Switching

- Converting c,s into c',s' s.t. for some p < q(<s',c'> mod p) \equiv (<s,c> mod q) (mod 2)
- [BV'11b]: Use with $p \ll q$ to reduce decryption complexity, can bootstrap without squashing
 - Modulus-switching & key-switching combined
 - The resulting c' can be decrypted, but cannot participate in any more homomorphic operations
- [BGV'11] Use with p < q to reduce the noise, can compute deeper circuits w/o bootstrapping
 - Roughly just by scaling, $c' \leftarrow round(p/q \cdot c)$
 - Rounding "appropriately"

Modulus Switching – Main Lemma

- Let p < q be odd integers, $c, s \in \mathbb{Z}_q^n$ such that $| < s, c > \mod q | < q/2 - q/p \cdot ||s||_1$ s must be $||s||_1$ is the l_1 norm of s short
- Let $c' = \operatorname{rnd}_c(p/q \cdot c)$, where $\operatorname{rnd}_c(\cdot)$ rounds each entry up or down so that $c' \equiv c \pmod{2}$
- Then (i) $(\langle s,c' \rangle \mod p) \equiv (\langle s,c \rangle \mod q) \pmod{2}$ and (ii) $|\langle s,c' \rangle \mod p | \leq \frac{p}{q} \cdot |\langle s,c \rangle \mod q | + ||s||_1$

Modulus Switching – Main Lemma Proof:

• For some κ , <*s*,*c*> mod $q = \langle s,c \rangle - \kappa q \in [\frac{-q}{2},\frac{q}{2}]$

- Actually in a smaller interval $\langle s,c \rangle - \kappa q \in \left[\frac{-q}{2} + \frac{q}{p} \|s\|_{1}, \frac{q}{2} - \frac{q}{p} \|s\|_{1}\right]$
- Multiplying by p/q we get $\langle s, \frac{p}{q}c \rangle - \kappa p \in [\frac{-p}{2} + ||s||_1, \frac{p}{2} - ||s||_1]$
- Replacing ^p/_qc by c'=rnd_c(^p/_qc), adds error ≤||s||₁:
 <s,c'> κp ∈ [^{-p}/₂, ^p/₂], so <s,c'> κp =<s,c'> mod p
 This also proves Part (ii)

Modulus Switching – Main Lemma

Proof:

- We know that $\langle s,c \rangle \mod q = \langle s,c \rangle \kappa q$ and $\langle s,c' \rangle \mod p = \langle s,c' \rangle \kappa p$ for the same κ
- Since p,q are odd then $\kappa p \equiv \kappa q \pmod{2}$
- Since $c' \equiv c \pmod{2}$ then $\langle s, c' \rangle \equiv \langle s, c \rangle \pmod{2}$
- $(\langle s,c'\rangle \mod p) \equiv \langle s,c'\rangle \kappa p$ $\equiv \langle s,c\rangle - \kappa q \pmod{2}$ $\equiv \langle \langle s,c\rangle \mod q \end{pmatrix}$

This proves part (i)

Making s Small

- If s is random in \mathbf{Z}_q^n then $||s||_1 > q$
- Luckily [ACPS 2009] proved that LWE is hard even when s is a random <u>short</u> vector
 - chosen from the same distribution as the noise e
- So we use this distribution for the secret keys
- Alternatively, we could have used the trick with BitDecomp() and PowersOf2()

Modulus Switching

- Example: q=127, p=29, c=(175,212), s=(2,3)
- $< s,c > mod q = 986 8 \times 127 = -30$
- *p*/q · c ≈ (39.9, 48.4)
 - To get $c' \equiv c \pmod{2}$ we round down both entries
 - *c*′=(39,48)
- *<s,c*'> mod *p* = 222− 8 x 29 = −10
- Solution Indeed κ =8 in both cases, -10=-30 (mod 2)
- The noise magnitude decreased from 30 to 10

• But the relative magnitude increased, $\frac{10}{29} > \frac{30}{127}$

How Does Modulus-Switching Help?

- Start with large modulus q_0 , small noise $\eta \ll q_0$
- After 1st multiplication, noise grows to $\approx \eta^2$
- Switch the modulus to $q_1 \approx q_0 / \eta$,
 - Noise similarly reduced to $\approx \eta^2/\eta = \eta$
- After next multiplication layer, noise again grows to $\approx \eta^2$, switch to $q_2 \approx q_1/\eta$ to reduce it back to η
- Keep switching moduli after each layer
 - Setting $q_{i+1} \approx q_i / \eta$
 - Until last modulus is too small, $q_d/2 \leq \eta$

How Does Modulus-Switching Help?

• Example: $q_0 \approx \eta^5$

	Using mod-switching		Without mod-switching	
	Noise	Modulus	Noise	Modulus
Fresh ciphertexts	η	η^5	η	η^{5}
Level-1, degree=2	η	η^4	η^2	η^5
Level-2, degree=4	η	η^3	η^4	η^5
Level-3, degree=8	η	η^2	η^8	η^5
Level-4, degree=16	η	η		

Putting It All Together

- Use tensor-product for multiplication
- Then reduce the dimension with $M(s \rightarrow s')$
 - First need to use PowersOf2/BitDecomp
- Then reduce the noise by switching modulus
 - This works if the secret key s is short
- Repeat until modulus is too small

The [BGV'11] "Leveled FHE"

- d-level circuits, initial noise η
 - Also $\tau \triangleq \eta \cdot \operatorname{poly}(n)$ is another parameter
- Set odd moduli q_0, \ldots, q_d s.t. $q_i \approx \tau^{d-i+1}$

Key generation:

- Schoose short secret $s_i \in \mathbb{Z}_{q_i}^n$, i=0,...,d, first entry=1
 - Set $s_i^* = \operatorname{vec}(s_i \otimes s_i) \in \mathbb{Z}_{q_i}^{n^2}$, $s_i^{**} = \operatorname{PowersOf2}_{q_i}(s_i^{*}) \in \mathbb{Z}_{q_i}^{t_i}$
- Public key has $M_0 = M(0 \rightarrow s_0) \in \mathbb{Z}_{q_0}^{n \times t_0}$ and $M_i = M(s_{i-1}^{**} \rightarrow s_i) \in \mathbb{Z}_{q_{i-1}}^{n \times t_{i-1}}$
 - $t_0=3n\log(q_0)$ and $t_i=n^2\log(q_i)$
 - The "short error vector" in M_i is $e_i \in Z_{q_{i-1}}^{t_{i-1}}$
 - Then $s_0 M_0 = 2e_0 \mod q_0$ and $s_i M_i = 2e_i + s_{i-1}^{**} \mod q_{i-1}$

The [G'11] "Leveled FHE"

- Enc, Dec, and homomorphic addition are the same as in the leveled SWHE
 - Level-i ciphertexts are modulo q_i
- Solution To multiply two level-*i* ciphertexts, c_1, c_2 :
 - $\boldsymbol{c}^* \leftarrow \operatorname{vec}(\boldsymbol{c}_1 \otimes \boldsymbol{c}_2) \in \mathbf{Z}_{q_i}^{n^2}, \quad (\langle \boldsymbol{s}_i^*, \boldsymbol{c}^* \rangle \mod q_i) \equiv b_1 b_2 \pmod{2}$
 - $\sim c^{**} \leftarrow BitDecom(c^*),$
 - \bullet $c' \leftarrow \mathsf{M}_{i+1} c^{**} \mod q_i$
 - $c \leftarrow \operatorname{rnd}_{c'}(q_{i+1}/q_i \cdot c'),$

 $(< s_i^{**}, c^{**} > \mod q_i) \equiv b_1 b_2 \pmod{2}$ $(< s_{i+1}, c^{*} > \mod q_i) \equiv b_1 b_2 \pmod{2}$ $(< s_{i+1}, c^{*} \mod q_i) \equiv b_1 b_2 \pmod{2}$ $(< s_{i+1}, c^{*} \mod q_{i+1}) \equiv b_1 b_2 \pmod{2}$

Noise in c is bounded by $(\eta^2 + \text{stuff})/\tau \leq \eta$

What We Have So Far

A leveled-FHE:

- Public-key size at least linear in circuit depth
- Can handle circuits of arbitrary polynomial depth

Security based on LWE

$$\frac{1}{\beta} \approx \frac{\text{modulus}}{\text{noise}} = (\text{poly}(n))^{\text{depth}}$$

- For "interesting" circuits this is more that poly(n)
- Modulus gets smaller as we go up the circuit
 - Lower levels somewhat more expensive

Variants and Optimizations

Use bootstrapping to recover large modulus

- Size of largest modulus depends on decryption circuit, not the circuits that we evaluate
- Can be made into "pure" FHE (non-leveled), need to assume circular security
- Base security on ring-LWE
 - LWE over a ring other than \mathbf{Z}_{a} (e.g., $\mathbf{R}=\mathbf{Z}_{a}[x]/f(x)$)
 - Can use smaller dimension (e.g., dim=2)
- Large plaintext space (not just Z₂)
 - Must tweak the modulus-switching technique

Variants and Optimizations

Batching: pack many bits into each ciphertext

- E.g., using the Chinese Remainders Theorem
- An operation (+,x) on ciphertext acts separately on each the packed bits
- Combining these optimizations, can reduce the overhead to $\tilde{O}(\lambda)$
 - Compare to $\tilde{O}(\lambda^{3.5})$ for the original blueprint

Current Status of HE constructions

Many new ideas are at the table now

- Still figuring out what works and what doesn't
- Looking at recent history, we can expect more new ideas in the next few months/years
- Implementation efforts are underway
 - Goal: get usable FHE
 - At least for some applications
 - My personal guess: almost at hand, perhaps only 2-3 years away
- Many open problems remain

8/17/2011