
Shai Halevi ― IBM
CRYPTO 2011

Wouldn’t it be nice to be able to…
Encrypt my data before sending to the cloud

While still allowing the cloud to search/sort/edit/…
this data on my behalf

Keeping the data in the cloud in encrypted form
Without needing to ship it back and forth to be
decrypted

August 16, 2011 2

Wouldn’t it be nice to be able to…
Encrypt my queries to the cloud

While still allowing the cloud to process them

Cloud returns encrypted answers
that I can decrypt

August 16, 2011 3

June 16, 2011 4

$skj#hS28ksytA@ …

June 16, 2011 5

$kjh9*mslt@na0
&maXxjq02bflx

m^00a2nm5,A4.
pE.abxp3m58bsa
(3saM%w,snanba
nq~mD=3akm2,A
Z,ltnhde83|3mz{n
dewiunb4]gnbTa*
kjew^bwJ^mdns0

Two parts with a 10-minute break in between

First part quite high-level
Lots of pictures/animations on the slides

Covers the [Gentry 2009] blueprint

Second part more algebraic
Lots of formulas on the slides

Covers newer constructions *GH’11,BV’11,BGV’11+
(April 2011 and on)

8/17/2011 6

An encryption scheme: (KeyGen, Enc, Dec)
Plaintext-space = {0,1}

(pk,sk) KeyGen($), cEncpk(b), bDecsk(c)

Semantic security *GM’84+:
 (pk, Encpk(0))  (pk, Encpk(1))
 means indistinguishable by efficient algorithms

June 16, 2011 7

H = {KeyGen, Enc, Dec, Eval}
 c*  Evalpk(f, c)

Homomorphic: Decsk(Evalpk(f, Encpk(x))) = f(x)
c* may not look like a “fresh” ciphertext

As long as it decrypts to f(x)

Compact: Decrypting c* easier than computing f

Otherwise we could use Evalpk (f, c)=(f, c) and
Decsk(f, c) = f(Decsk(c))

|c*| independent of the complexity of f

June 16, 2011 8

c*

Some examples:

“Raw RSA”: c  xe mod N (x  cd mod N)
x1

e x x2
e = (x1 x x2) e mod N

GM84: Enc(0)R QR, Enc(1)R QNR (in ZN*)
Enc(b1) x Enc(b2) = Enc(b1b2) mod N

June 16, 2011 9

Plaintext space P Ciphertext space C
x1 x2

ci  Enc(xi) c1 c2

* #

y d

y  Dec(d)

Mult-mod-p *ElGamal’84+

Add-mod-N *Pallier’98+

Quadratic-polys mod p *BGN’06+

Branching programs *IP’07+

A different type of solution for any circuit
*Yao’82,…+

Not compact, ciphertext grows with circuit
complexity

Also NC1 circuits *SYY’00]

June 16, 2011 10

It will be really nice to have…
Plaintext space Z2 (w/ ops +,x)

Ciphertexts live in algebraic ring R (w/ ops +,x)

Homomorphic for both + and x
Enc(b1) + Enc(b2) in R = Enc(b1+ b2 mod 2)

Enc(b1) x Enc(b2) in R = Enc(b1 x b2 mod 2)

Can compute any function on the encryptions
Since every binary function is a polynomial

Won’t get exactly this, but it’s a good motivation

June 16, 2011 11

Evaluate any function in four “easy” steps

Step 1: Encryption from linear ECCs
Additive homomorphism

Step 2: ECC lives inside a ring
Also multiplicative homomorphism

But only for a few operations (low-degree poly’s)

Step 3: Bootstrapping
Few ops (but not too few)  any number of ops

Step 4: Everything else
“Squashing” and other fun activities

June 16, 2011 13

Error-Correcting Codes
(not Elliptic-Curve Cryptography)

For “random looking” codes, hard to distinguish
close/far from code

Many cryptosystems built on this hardness
E.g., *McEliece’78, AD’97, GGH’97, R’03,…+

June 16, 2011 14

KeyGen: choose a “random” Code
Secret key: “good representation” of Code

Allows correction of “large” errors

Public key: “bad representation” of Code
Can generate “random code-words”

Hard to distinguish close/far from the code

Enc(0): a word close to Code

Enc(1): a random word
Far from Code (with high probability)

June 16, 2011 15

Code determined by a secret integer p

Codewords: multiples of p

Good representation: p itself

Bad representation:
N = pq, and also many xi = pqi + ri

Enc(0): subset-sum(xi’s)+r mod N

r is new noise, chosen by encryptor

Enc(1): random integer mod N

June 16, 2011 16

ri << p

p N

Both Enc(0), Enc(1) close to the code
Enc(0): distance to code is even

Enc(1): distance to code is odd

Security unaffected when p is odd

In our example of integers mod p:
Enc(b) = 2(r+subset-sum(xi’s)) + b mod N
 = kp + 2(r+subset-sum(ri’s))+b

Dec(c) = (c mod p) mod 2

June 16, 2011

17

N p

xi = pqi + ri

much smaller

than p/2

Plaintext encoded
in the “noise”

c1+c2 = (codeword1+codeword2)
 + (2r1+b1)+(2r2+b2)

codeword1+codeword2  Code

(2r1+b1)+(2r2+b2)=2(r1+r2)+b1+b2 is still small

If 2(r1+r2)+b1+b2 < min-dist/2, then
dist(c1+c2, Code) = 2(r1+r2)+b1+b2
 dist(c1+c2, Code)  b1+b2 (mod 2)

Additively-homomorphic while close to Code

June 16, 2011 18

Product in Ring of
small elements is small

What happens when multiplying in Ring:
c1∙c2 = (codeword1+2r1+b1)∙(codeword2+2r2+b2)
= codeword1∙X + Y∙codeword2

 + (2r1+b1)∙(2r2+b2)

If:
codeword1∙X + Y∙codeword2  Code

 (2r1+b1)∙(2r2+b2) < min-dist/2

Then
dist(c1c2, Code) = (2r1+b1)∙(2r2+b2) = b1∙b2 mod 2

June 16, 2011 19

Code is an ideal

Secret-key is p, public-key is N and the xi’s

ci = Encpk(bi) = 2(r+subset-sum(xi’s)) + b mod N
 = kip + 2ri+bi

Decsk(ci) = (ci mod p) mod 2

c1+c2 mod N = (k1p+2r1+b1)+(k2p+2r2+b2) – kqp
 = k’p + 2(r1+r2) + (b1+b2)

c1c2 mod N = (k1p+2r1+b1)(k2p+2r2+b2) – kqp
 = k’p + 2(2r1r2+r1b2+r2b1)+b1b2

Additive, multiplicative homomorphism

As long as noise < p/2

 8/17/2011 20

xi = pqi + ri

N p

We need a linear error-correcting code C
With “good” and “bad” representations

C lives inside an algebraic ring R
C is an ideal in R

Sum, product of small elements in R is still small

Can find such codes in Euclidean space
Often associated with lattices

Then we get a “somewhat homomorphic”
encryption, supporting low-degree polynomials

Homomorphism while close to the code

8/17/2011 21

[G 2009] Polynomial Rings
Security based on hardness of “Bounded-Distance
Decoding” in ideal lattices

[vDGHV 2010] Integer Ring
Security based on hardness of the “approximate-
GCD” problem

[GHV 2010] Matrix Rings (only partial solution)
Only qudratic polynomials, security based on
hardness of “Learning with Errors” (LWE)

[BV 2011a] Polynomial Rings
Security based on “ring LWE”

June 16, 2011 22

June 16, 2011 23

P(x1, x2 ,…, xt)

x1

…

x2

xt

P

So far, can evaluate low-degree polynomials

So far, can evaluate low-degree polynomials

Can eval y=P(x1,x2…,xn) when xi’s are “fresh”

But y is an “evaluated ciphertext”
Can still be decrypted

But eval Q(y) will increase noise too much

“Somewhat Homomorphic” encryption (SWHE)

June 16, 2011 24

x1

…

x2

xt

P

P(x1, x2 ,…, xt)

So far, can evaluate low-degree polynomials

Bootstrapping to handle higher degrees
We have a noisy evaluated ciphertext y
Want to get another y with less noise

June 16, 2011 25

x1

…

x2

xt

P

P(x1, x2 ,…, xt)

For ciphertext c, consider Dc(sk) = Decsk(c)
Hope: Dc(*) is a low-degree polynomial in sk

Include in the public key also Encpk(sk)

Homomorphic computation applied only to the
“fresh” encryption of sk

June 16, 2011
26

Dc

y

sk1

sk2

skn

…

c

Dc(sk)

= Decsk(c) = y

c’

Requires
“circular
security”

sk1

sk2

skn

…

Similarly define Mc1,c2(sk) = Decsk(c1)∙Decsk(c1)

Homomorphic computation applied only to the
“fresh” encryption of sk

June 16, 2011 27

Mc1,c2

y2

sk1

sk2

skn

…

c2

Mc1,c2(sk)

= Decsk(c1) x Decsk(c2) = y1 x y2

c’

y1
c1

sk1

sk2

skn

…

Cryptosystems from *G’09, vDGHV’10, BG’11a+
cannot handle their own decryption

Tricks to “squash” the decryption procedure,
making it low-degree

Nontrivial, requires putting more information
about the secret key in the public key

Requires yet another assumption, namely hardness
of the Sparse-Subset-Sum Problem (SSSP)

I will not talk about squashing here

June 16, 2011 28

SWHE schemes may be reasonable

But bootstrapping is inherently inefficient
Homomorphic decryption for each multiplication

Asymptotically, overhead of at least 𝑂 (𝜆3.5)

Best implementation so far is [GH 2011a]
Implemented a variant of [Gentry 2009]

Public key size ~ 2GB

Bootstrapping takes 3-30 minutes

Similar performance also in [CMNT 2011]
Implemented the scheme from [vDGHV’10+

June 16, 2011 29

Bootstrapping without squashing

Hybrid of SWHE and MHE schemes
MHE = Multiplicative HE (e.g., Elgamal)

Express decryption as a “restricted
depth-3” SPS arithmetic circuit

Switch to MHE for the middle P level
All necessary MHE ciphertexts found in public key

Translate back to SWHE for the top S level
SWHE evaluates MHE decryption, not own decryption

No need for squashing, SSSP

+ + + + + + + +

X X X

+

+

FHE without squashing, security based on
Learning-with-Errors (LWE), or ring-LWE

Main innovation: multiplicative homomorphism
without a ring structure

A host of new techniques/tricks, can be used for
further improvements

8/17/2011 32

Hard to solve linear equations with noise
Given:

 decide if
b is a random vector in Zq

m, or

b is close to the row-space of A (distance < bq)
b = sA + e for random s Zq

n and random short e Zq
m

Parameters: n (dim), q≥poly(n) (modulus),
b≤1/poly(n) (noise magnitude), m = poly(n)

*Regev’05, Peikert’09+: As hard as some worst-case
 lattice problems in dim n (for certain range of params)

8/17/2011 33

A R Zq
nxm

b  Zq
m

mod q maps to [-q/2, q/2]

Bit-by-bit encryption, plaintext is a bit b

Think of it as symmetric encryption for now

Secret-key s, ciphertext c, are vectors in Zq
n

Simplifying convention: s1 = 1, i.e., s = (1|t)

Decryption is b=(<s,c> mod q) mod 2
(<s,c> mod q) is small, absolute value ≤ bq

In other words:
Ciphertexts are “close” to space orthogonal to s

Plaintext encoded in parity of “distance”
“distance” is the size of (<s,c> mod q)

8/17/2011 34

This is an instance of encryption from linear
ECCs, additive homomorphism is “for free”

As long as things remain close to the code

But how to multiply?
Ciphertexts are vectors, not ring elements

Tensor product (??)

Can decrypt M(!), s(uv)st = <s,u>·<s,v> (mod q)

If no wraparound then
(s(uv)st mod q) = (<s,u> mod q)·(<s,v> mod q)

So (s(uv)st mod q) mod 2 = Decs(u)·Decs(v)

8/17/2011 35

M = uv, Mij = ui · vj mod q

s(uv)st is a bilinear form in s, so linear in ss

Opening uv, ss into vectors, we get
s(uv)st = <vec(ss),vec(uv)>

Denote s*=vec(ss), c*=vec(uv), then:
Decs*(c*) = (<s*,c*> mod q) mod 2

<s*,c*> mod q is still quite small, ≤ (bq)2 << q

We can repeat the process
But dimension is squared, n  n2  n4  n8 …
so can repeat only a constant number of times

8/17/2011 36

We have an “extended ciphertext” c* with
respect to “extended secret key” s*=vec(ss)

Want a low-dimension ciphertext c’ with
respect to a “standard secret key” s’

Maybe s’=s, maybe not

Key idea: publish “an encryption” of s*
under s’ to enable the translation

Hopefully just a matrix M(s*
s’)Zq

dim(s’)x dim(s*),
so that c’ = M·c*Zq

dim(s’)

8/17/2011 37

Recall s’=(1|t’), so s’M= t’A+b = 2e+s*

Let c’ = M·c*Zq
dim(s’), then mod q we have:

 <s’,c’>  s’Mc*  <2e+s*,c*>  <s*,c*>+2<e,c*>

If only c* was short, then 2<e,c*> was small, so
(<2e+s*,c*> mod q) = (<s*,c*> mod q)+2<e,c*>

Hence (<s’,c’> mod q)  (<s*,c*> mod q) (mod 2)

So Decs’(c’) = Decs* (c
*)

8/17/2011 38

A R Zq
dim(t’) x dim(s*)

b = -t’A+(2e+s*) mod q
M= e is short

Want to “represent” the long vector c* by some
short vector c’, perhaps in higher dimension

Example: c* =(76329, 31692, 43870)
l2-norm ~ 90000

 represented by c’=(7,6,3,2,9, 3,1,6,9,2, 4,3,8,7,0)
l2-norm only ~ 21

Later we will use binary rather than decimal

Note that we have a “linear relation”:
𝒄∗ = 104 ∙ 𝒄′1,6,11 + ⋯+ 10 ∙ 𝒄′4,9,14 + 𝒄′5,10,15

8/17/2011 39

Denote c*=(𝑐1
∗, … , 𝑐𝑘

∗), i.e., 𝑐𝑖
∗ is the i’th entry

Let 𝑐𝑖𝑙
∗ …𝑐𝑖0

∗ be binary representation of 𝑐𝑖
∗

𝑐𝑖
∗ = 2𝑗𝑐𝑖𝑗

∗𝑙
𝑗=0

Let bj be the vector of j’th bits bj=(𝑐1𝑗
∗ , … , 𝑐𝑘𝑗

∗)

so c*= 2𝑗𝒃𝒋
𝑙
𝑗=0 , and <s*,c*>= 2𝑗 𝒔∗, 𝒃𝒋

𝑙
𝑗=0

Let s**=PowersOf2q(s*)= (s*|2s*|4s*|…|2ls*) mod q,
and c**=BitDecomp(c*) = (b0|b1 |

 b2 |…| bl)

Then <s**,c**>  <s*,c*> (mod q)

c** is short (in l2-norm), it is a 0-1 vector
8/17/2011 40

Publish the matrix M(s**
s’)Zq

dim(s’) x dim(s**)

Given the expanded ciphertext c*

Compute the “doubly expanded” c**

Set c’ = M·c** mod q

We know that <s**,c**>  <s*,c*> (mod q)

Also <s’,c’>  <s**,c**>+2<e,c**> (mod q)

(<s*,c*> mod q) is small and so is 2<e,c**> hence
(<s’,c’> mod q) = (<s*,c*>+2<e,c**> mod q)

Last equality is over the integers

 Decs’(c’) = Decs* (c
*)

8/17/2011 41

Under LWE, cannot tell M(s*
s’) from random

Even if you know s* (but not s’)

Assuming q is odd

Pf: if (A, r)(A, tA+e) then (2A, 2r)(2A, 2tA+2e)

For odd q: (2A, 2r)  (A, r),
 (2A, 2tA+2e)  (A, tA+2e)

 means that these distributions are identical

We get (A, r)  (A, tA+2e)

It follows that (A, r)(A, r+s*)(A, tA+2e+s*)

8/17/2011 42

A

-t’A+2e+s*

M(s*s’)=

(Key-size ≥linear in depth of circuits to evaluate)

KeyGen: choose random s0,s1,…,sd Zq
n

First entry in each si is 1

Public key has matrices M0=M(0s0)
and Mi+1=M(si

**
si+1) for i=0,1,…,d-1

Then s0M0 = 2e0, and siMi = 2ei+𝒔𝑖−1
∗∗

Enc(b): rR{0,1}m, cM0r + [b,0,…,0+, output (c,0)

Dec(c,i): Recover b(<si,c> mod q) mod 2
For level-0: <so,c>= s0M0r+ b = 2<e0,r>+b

e0,r are short so 2 𝒆0, 𝒓 ≪ 𝑞, hence no wraparound

8/17/2011 43

Ciphertexts in same level can be added directly

To multiply two level-i ciphertexts (c1,i),(c2,i)
Compute the extended c*=vec(c1c2), the
“doubly extended” c**, and set c’Mic

**

(c’,i+1) is a level-(i+1) ciphertext

Semantic-security follows because:
Under LWE, the Mi’s are pseudo-random

If they were random then ciphertexts would have
no information about the encrypted plaintexts

By leftover hash lemma

8/17/2011 44

The “noise” in a ciphertext (c,i) is <si,c> mod q

Noise magnitude roughly doubles on addition,
get squared on multiplication

Can only evaluate log-depth circuits before
the noise magnitude exceeds q

How to evaluate deeper circuits?
Squash & bootstrap,

Chimeric & bootstrap,

or an altogether new technique…

8/17/2011 45

Converting c,s into c’,s’ s.t. for some p < q
(<s’,c’> mod p)  (<s,c> mod q) (mod 2)

*BV’11b+: Use with 𝑝 ≪ 𝑞 to reduce decryption
complexity, can bootstrap without squashing

Modulus-switching & key-switching combined

The resulting c’ can be decrypted, but cannot
participate in any more homomorphic operations

*BGV’11+ Use with 𝑝 < 𝑞 to reduce the noise,
can compute deeper circuits w/o bootstrapping

Roughly just by scaling, c’round(p/q ·c)

Rounding “appropriately”
8/17/2011 46

Let p<q be odd integers, c,sZq
n such that

|<s,c> mod q|< q/2 – q/p · 𝒔 1

𝒔 1 is the l1 norm of s

Let c’=rndc(p/q ·c), where rndc(·) rounds
each entry up or down so that c’c (mod 2)

Then (i) (<s,c‘> mod p)  (<s,c> mod q) (mod 2)
 and (ii)|<s,c‘> mod p|≤

𝑝

𝑞
·|<s,c> mod q|+ 𝒔 1

8/17/2011 47

s must be

short

Proof:

For some k, <s,c> mod q = <s,c> - kq  [
−𝑞

2
,
𝑞

2
]

Actually in a smaller interval
<s,c> - kq  [

−𝑞

2
+
𝑞

𝑝
 𝒔 1,

𝑞

2 -

𝑞

𝑝
𝒔 1]

Multiplying by p/q we get
<s,

𝑝

𝑞
c> - kp  [

−𝑝

2
+ 𝒔 1,

𝑝

2
- 𝒔 1]

Replacing
𝑝

𝑞
c by c’=rndc(

𝑝

𝑞
c), adds error ≤ 𝒔 1:

<s,c’> - kp  [
−𝑝

2
,
𝑝

2
], so <s,c’> - kp =<s,c’> mod p

This also proves Part (ii)

8/17/2011 48

Proof:

We know that <s,c> mod q = <s,c> - kq and
<s,c’> mod p = <s,c’> - kp for the same k

Since p,q are odd then kp kq (mod 2)

Since c’c (mod 2) then <s,c’><s,c> (mod 2)

(<s,c‘> mod p) = <s,c’> - kp
  <s,c> - kq (mod 2)
 = (<s,c> mod q)

This proves part (i)

8/17/2011 49

If s is random in Zq
n then ||s||1 > q

Luckily [ACPS 2009] proved that LWE is hard
even when s is a random short vector

chosen from the same distribution as the noise e

So we use this distribution for the secret keys

Alternatively, we could have used the trick with
BitDecomp() and PowersOf2()

8/17/2011 50

Example: q=127, p=29, c=(175,212), s=(2,3)

<s,c> mod q = 986 – 8 x 127 = –30

p/q ·c  (39.9, 48.4)
To get c’c (mod 2) we round down both entries

c’=(39,48)

<s,c’> mod p = 222– 8 x 29 = –10

Indeed k=8 in both cases, –10–30 (mod 2)

The noise magnitude decreased from 30 to 10

But the relative magnitude increased,
10

29
>

30

127

8/17/2011 51

Start with large modulus q0, small noise 𝜂 ≪ q0

After 1st multiplication, noise grows to ≈ 𝜂2

Switch the modulus to q1≈q0/𝜂,
Noise similarly reduced to ≈ 𝜂2 𝜂 = 𝜂

After next multiplication layer, noise again grows
to ≈ 𝜂2, switch to q2≈q1/𝜂 to reduce it back to 𝜂

Keep switching moduli after each layer
Setting qi+1≈qi/𝜂

Until last modulus is too small, qd/2≤𝜂

8/17/2011 52

Example: q0≈ 𝜂5

8/17/2011 53

Using mod-switching Without mod-switching

Noise Modulus Noise Modulus

Fresh
ciphertexts

𝜂 𝜂5 𝜂 𝜂5

Level-1,
degree=2

𝜂 𝜂4 𝜂2 𝜂5

Level-2,
degree=4

𝜂 𝜂3 𝜂4 𝜂5

Level-3,
degree=8

𝜂 𝜂2 𝜂8 𝜂5

Level-4,
degree=16

𝜂 𝜂

decryption

errors

Use tensor-product for multiplication

Then reduce the dimension with M(ss’)
First need to use PowersOf2/BitDecomp

Then reduce the noise by switching modulus
This works if the secret key s is short

Repeat until modulus is too small

8/17/2011 54

d-level circuits, initial noise 𝜂
Also τ ≜ 𝜂 ∙ poly(𝑛) is another parameter

Set odd moduli q0,…,qd s.t. qi ≈ 𝜏d-i+1

Key generation:
Choose short secret siZqi

n , i=0,…,d, first entry=1
• Set si

*=vec(sisi)Zqi
n, 𝒔𝑖

∗∗=PowersOf2qi(si
*)Zqi

ti

Public key has M0=M(0s0)Zq0
n x t0

and Mi=M(𝒔𝑖−1
∗∗
si)Zqi-1

n x ti-1
The “short error vector” in Mi is eiZqi-1

ti-1

Then s0M0 = 2e0 mod q0 and siMi = 2ei+𝒔𝑖−1
∗∗ mod qi-1

8/17/2011 55

2

t0=3nlog(q0) and
ti=n2log(qi)

Enc, Dec, and homomorphic addition are the
same as in the leveled SWHE

Level-i ciphertexts are modulo qi

To multiply two level-i ciphertexts, c1,c2:
c*
vec(c1c2) Zqi

n, (<si
,c> mod qi) b1b2(mod 2)

c**
BitDecom(c*), (<si

,c> mod qi) b1b2(mod 2)

c’Mi+1c
** mod qi (<si+1,c’> mod qi) b1b2(mod 2)

c rndc’(qi+1/qi ·c’), (<si+1,c> mod qi+1) b1b2(mod 2)

Noise in c is bounded by (𝜂2+stuff)/t ≤ 𝜂
8/17/2011 56

2

A leveled-FHE:
Public-key size at least linear in circuit depth

Can handle circuits of arbitrary polynomial depth

Security based on LWE
1

𝛽
≈

modulus
noise

= (poly(𝑛))
depth

For “interesting” circuits this is more that poly(n)

Modulus gets smaller as we go up the circuit
Lower levels somewhat more expensive

8/17/2011 57

Use bootstrapping to recover large modulus
Size of largest modulus depends on decryption
circuit, not the circuits that we evaluate

Can be made into “pure” FHE (non-leveled),
need to assume circular security

Base security on ring-LWE
LWE over a ring other than Zq (e.g., R=Zq[x]/f(x))

Can use smaller dimension (e.g., dim=2)

Large plaintext space (not just Z2)
Must tweak the modulus-switching technique

8/17/2011 58

Batching: pack many bits into each ciphertext
E.g., using the Chinese Remainders Theorem

An operation (+,x) on ciphertext acts separately on
each the packed bits

Combining these optimizations, can reduce the
overhead to 𝑂 (𝜆)

Compare to 𝑂 (𝜆3.5) for the original blueprint

8/17/2011 59

Many new ideas are at the table now
Still figuring out what works and what doesn’t

Looking at recent history, we can expect more
new ideas in the next few months/years

Implementation efforts are underway
Goal: get usable FHE

At least for some applications

My personal guess: almost at hand,
perhaps only 2-3 years away

Many open problems remain

8/17/2011 60

