Homomorphic Encryption
Tutorial

Shai Halevi — IBM
CRYPTO 2011

Computing on Encrypted Data

@ Wouldn’t it be nice to be able to...
@ Encrypt my data before sending to the cloud
@ While still allowing the cloud to search/sort/edit/...
this data on my behalf

@ Keeping the data in the cloud in encrypted form

@ Without needing to ship it back and forth to be
decrypted

Computing on Encrypted Data

@ Wouldn’t it be nice to be able to...

@ Encrypt my queries to the cloud
@ While still allowing the cloud to process them

@ Cloud returns encrypted answers
@ that | can decrypt

Computing on Encrypted Data

¥ GET MAP AND DIRECTIONS

B [Lax v O

9 | University of California, Santa Barbara, CA ILJ (%)

Sskj#hS28ksytA@ ...

¥ FIND A BUSINESS ON THE MAP Clear

Er M e ndiad wanhs HAksls
Fing Restaurants, nowess,,,

June 16, 2011

Computing on Encrypted Data

¥ GET MAP AND DIRECTIONS Clear | Gprint % Send v,,_,%?ie, ¥ = Wwevefic s kJ h 9 %k ms It @ n ao
nILAX H“ ‘ o .)
B - &maXxjgq02bflx

» Distance: 96.87 mi v Time: 1 hr 40 mins
Q

& We could not find the exact location you asked for so here's the center m IAN OO a 2 n m 5' A4 .

p Add another location of Santa Barbara, CA instead.

p Iuniversxt-,' of California, Santa Barbara, CA I v ‘

‘,’ NEW Click and drag to adjust your route.) ‘.F'E:C"""k Your speling p E . a bX p 3 m 5 8 bsa

B Enter 2 new strest address, city & state or ZIP
Trip distance: 96.87 mi ¥ Time: 1 hr 40 mins B Report 2 mapping error hers

Reverse Directions | Round-Trip ﬂ m (358 M%W,Sna n ba

> FIND A BUSINESS ON THE MAP = : ﬁég;—m-—_whm/a@uhfg] nqu D=3a km Z’A
Z,Itnhde83|3mz{n

dewiunb4]gnbTa*
kjiew” bwJ*mdns0

June 16, 2011

Organization of the Tutorial

@ Two parts with a 10-minute break in between
@ First part quite high-level

@ Lots of pictures/animations on the slides

@ Covers the [Gentry 2009] blueprint

@ Second part more algebraic

@ Lots of formulas on the slides

@ Covers newer constructions [GH’11,BV’11,BGV’11]
(April 2011 and on)

Some Notations

@ An encryption scheme: (KeyGen, Enc, Dec)
“@ Plaintext-space ={0,1}
9 (pk,sk) €KeyGen($), c&<Ency(b), b&Decg(c)
@ Semantic security [GM’84]:
(Pk, Enc,,(0)) =~ (pk, Encp (1))

~ means indistinguishable by efficient algorithms

Homomorphic Encryption (FHE)

@ H = {KeyGen, Enc, Dec, Eval}

@ Homomorphic: Decsk((Evaka(f, Encpk(x))) = f(X)
“@ Cc* may not look like a “fresh” ciphertext
@ As long as it decrypts to f(x)

@ Compact: Decrypting c* easier than computing f

¥ Otherwise we could use Eval, (f, ¢)=(f, c) and
Dec,,(f, c) = f(Dec,,(c))

@ |c*| independent of the complexity of f

Privacy Homomorphisms [RAD78]

Plaintext space P Ciphertext space C
X, X, c; €< Enc(x,) s c,
N N
CI) y € Dec(d) @
y “ d

Some examples:

@ “Raw RSA”: ¢ € x®mod N (x € c? mod N)
9 XXX = (X xX,)¢mod N

® GM84: Enc(0)e, QR, Enc(1)eg QNR (in Z*)
@ Enc(b,) x Enc(b,) = Enc(b,®b,) mod N

More Privacy Homomorphisms

@ Mult-mod-p [ElIGamal’84]

@ Add-mod-N [Pallier’98]

@ Quadratic-polys mod p [BGN’06]
@ Branching programs [IP’07]

@ A different type of solution for any circuit
[Yao’82,...]
“ Not compact, ciphertext grows with circuit
complexity
@ Also NC1 circuits [SYY'0O0]

(x,+)-Homomorphic Encryption

It will be really nice to have...
@ Plaintext space Z, (w/ ops +,x)
@ Ciphertexts live in algebraic ring R (w/ ops +,x)
® Homomorphic for both + and x
@ Enc(b,) + Enc(b,) in R = Enc(b;+ b, mod 2)
@ Enc(b,) x Enc(b,) in R =Enc(b; x b, mod 2)
=» Can compute any function on the encryptions
“@ Since every binary function is a polynomial
@ Won’'t get exactly this, but it’s a good motivation

June 16, 2011 11

The [Gentry 2009] blueprint

Evaluate any function in four “easy” steps
@ Step 1: Encryption from linear ECCs
@ Additive homomorphism _ \Error_COrrecﬂng -
@ Step 2: ECC lives inside a ring o ElPtecine Coplogiapy) =
©@ Also multiplicative homomorphism
©@ But only for a few operations (low-degree poly’s)
@ Step 3: Bootstrapping
©@ Few ops (but not too few) =» any number of ops
@ Step 4: Everything else
@ “Squashing” and other fun activities

Step 1: Encryption from Linear ECCs

@ For “random looking” codes, hard to distinguish
close/far from code

@ Many cryptosystems built on this hardness
@ E.g., [McEliece’78, AD’'97, GGH’97, R’03,...]

Step 1: Encryption from Linear ECCs

@ KeyGen: choose a “random” Code

@ Secret key: “good representation” of Code
@ Allows correction of “large” errors

@ Public key: “bad representation” of Code
@ Can generate “random code-words”
@ Hard to distinguish close/far from the code

@ Enc(0): a word close to Code

@ Enc(1): a random word
@ Far from Code (with high probability)

Example: Integers mod p [vDGHV 2010]

@ Code determined by a secret integer p
@ Codewords: multiples of p

@ Good representation: p itself

@ Bad representation: r<<p

@ N =pg, and also many X; = pq; + I;
@ Enc(0): subset-sum(x;'s)+r mod N
“ I is new noise, chosen by encryptor
@ Enc(1): random integer mod N

A Different Input Encoding

N
]
X;=Ppg; +r;

@ Both Enc(0), Enc(1) close to the code

@ Enc(0): distance to code is even 7 printext encoded
@ Enc(1): distance to code is odd in the “noise”
@ Security unaffected when p is odd

@ In our example of integers mod p:

@ Enc(b) = 2(r+subset-sum(x;’s)) + b mod N
= Kp +_2(r+subset-sum(ri’S))+bv_; 3

©@ Dec(c) = (c mod p) mod 2

June 16, 2011

Additive Homomorphism

@ C,+C, = (codeword,+codeword,)
+ (2r;+0,)+(2r,+0,)

@ codeword,+codeword, € Code

@ (2r,+b)+(2r,+b,)=2(r+r,)+b;+Db, is still small
@ If 2(r+r,)+b,+b, < min-dist/2, then

dist(c,+c,, Code) = 2(r,+r,)+b,+b,

=> dist(c,+c,, Code) =b,+b, (mod 2)
@ Additively-homomorphic while close to Code

Step 2: Code Lives ina Ring

@ What happens when multiplying in Ring:

@ C,°C, = (codeword,+2r,+b,)-(codeword,+2r,+h,)
= codeword-X + Y-codeword,

@ If %is an ideal |
© codeword,-X + Y-codeword, € Code
@ (2r;+b,)-(2r,+b,) < min-dist/2
@ Then ﬁ
@ dist(c,C,, Code) = (2r,+b,)-(2r,+b,) = b,;-b, mod 2

Product in Ring of
small elements is small

Example: Integers mod p [vDGHV 2010]

Ot O O O O O @, O O O]
X;=pg; + T

@ Secret-key is p, public-key is N and the x;’s
@ C; = Ency,(b;) = 2(r+subset-sum(x;’s)) + b mod N
= kip +2r;+b;
@ Decg/(C;) = (¢; mod p) mod 2
@ C,+C, mod N = (k,p+2r+b,)+(k,p+2r,+b,) — kgp
=K'p +2(r+r,) + (by+hy,).
@ c,Cc, mod N = (k,p+2r,+b,)(k,p+2r,+b,) — kgp
=K'p + 2(2r,r,+r,b+r,b,)+b,b,
@ Additive, multiplicative homomorphism
@ As long as noise < p/2

Summary Up To Now

@ We need a linear error-correcting code €
@ With “good” and “bad” representations
@ (lives inside an algebraic ring R
@ CisanidealinR
@ Sum, product of small elements in R is still small
@ Can find such codes in Euclidean space
@ Often associated with lattices
@ Then we get a “somewhat homomorphic”
encryption, supporting low-degree polynomials
“ Homomorphism while close to the code

Instantiations

@ [G 2009] Polynomial Rings
@ Security based on hardness of “Bounded-Distance
Decoding” in ideal lattices

@ [VvDGHV 2010] Integer Ring

@ Security based on hardness of the “approximate-
GCD” problem

@ [GHV 2010] Matrix Rings (only partial solution)

@ Only qudratic polynomials, security based on
hardness of “Learning with Errors” (LWE)

@ [BV 2011a] Polynomial Rings
“@ Security based on “ring LWE”

Step 3: Bootstrapping

@ So far, can evaluate low-degree polynomials

P(X1, X5 ,eee) X,)

June 16, 2011

Step 3: Bootstrapping

@ So far, can evaluate low-degree polynomials

P(X1, X5 ,eee) X,)

@ Can evally=P(X;,X5...,X,) whenKs are “fresh”

@ But|ylis an “evaluated ciphertext”
@ Can still be decrypted
@ But eval [®]§] will increase noise too much

@ “Somewhat Homomorphic” encryption (SWHE)

June 16, 2011 24

Step 3: Bootstrapping

@ So far, can evaluate low-degree polynomials

P(X1, X5 ,eee) X,)

@ Bootstrapping to handle higher degrees
@ We have a noisy evaluated ciphertextly
@ Want to get another|y |with less noise

June 16, 2011

Step 3: Bootstrapping

@ For ciphertext ¢, consider D (sk) = Dec(c)
@ Hope: D (*) is a low-degree polynomial in sk
@ Include in the public key also Encpk(sk)

Requires
\\ .
circular
. V{4
security

¢’| De(sk)
= Decylc) =y

® Homomorphic computation applied only to the
“fresh” encryption of sk

June 16, 2011

Step 3: Bootstrapping

@ Similarly define Mc,c,(Sk) = Decg(c,)-Decg(c,)

Y1 Yo

¢ G

Mcl,cz(Sk)

= Decy(c;) X Decy(cy) = ¥, XY,

® Homomorphic computation applied only to the
“fresh” encryption of sk

June 16, 2011

Step 4: Everything Else

@ Cryptosystems from [G’'09, vDGHV’10, BG'113]
cannot handle their own decryption

@ Tricks to “squash” the decryption procedure,
making it low-degree

@ Nontrivial, requires putting more information
about the secret key in the public key

@ Requires yet another assumption, namely hardness
of the Sparse-Subset-Sum Problem (SSSP)

“ | will not talk about squashing here

Performance of Blueprint

@ SWHE schemes may be reasonable
@ But bootstrapping is inherently inefficient
“ Homomorphic decryption for each multiplication
@ Asymptotically, overhead of at least 0(13°)
@ Best implementation so far is [GH 20113a]
@ Implemented a variant of [Gentry 2009]
@ Public key size ~ 2GB
“@ Bootstrapping takes 3-30 minutes
@ Similar performance also in [CMNT 2011]
@ Implemented the scheme from [vDGHV’10]

Beyond the Blueprint

Chimeric HE [GH 2011b]

- ! "“*}
@ Bootstrapping without squashing WY
@ Hybrid of SWHE and MHE schemes .

@ MHE = Multiplicative HE (e.g., Elgamal)

@ Express decryption as a “restricted
depth-3” 211X arithmetic circuit

@ Switch to MHE for the middle I1 level
@ All necessary MHE ciphertexts found in public key

@ Translate back to SWHE for the top X level
@ SWHE evaluates MHE decryption, not own decryption

@ No need for squashing, SSSP

|Brakerski-Vaikuntanathan 2011b]

@ FHE without squashing, security based on
Learning-with-Errors (LWE), or ring-LWE

@ Main innovation: multiplicative homomorphism
without a ring structure

@ A host of new techniques/tricks, can be used for
further improvements

Learning with Errors (LWE) [Regev 2005]

Hard to solve linear equations with noise
@ Given: b e Z"

decide if A Srég "
@ bis arandom vectorin qu, or
@ b is close to the row-space of A (distance < [39)
@ b=sA+eforrandomse Z," and random shortee Z;"
@ Parameters: n (dim), g>poly(n) (modulus),
B<1/poly(n) (noise magnitude), m = poly(n)

[Regev’05, Peikert’09]: As hard as some worst-case
lattice problems in dim N (for certain range of params)

The [BV'11b] Construction

@ Bit-by-bit encryption, plaintext is a bit b
@ Think of it as symmetric encryption for now
@ Secret-key s, ciphertext C, are vectors in Z"
@ Simplifying convention: s; =1, i.e., s =(1]t)
@ Decryption is b=(<s,c> mod ¢) mod 2
@ (<s,c> mod q) is small, abso\I\i‘Jte value £ 39
@ In other words: ~__mod q maps to [-q/2, g/2]

@ Ciphertexts are “close” to space orthogonal to s

“@ Plaintext encoded in parity of “distance”
@ “distance” is the size of (<s,c> mod q)

Homomorphism

@ This is an instance of encryption from linear
ECCs, additive homomorphism is “for free”

@ As long as things remain close to the code

@ But how to multiply?
@ Ciphertexts are vectors, not ring elements

@ Tensor product (??) | M = u®yv, M;; =U; - v;mod
@ Can decrypt M(!), s(u®v)st = <s,u>-<s,v> (mod q)

@ |f no wraparound then
(S(u®V)st mod g) = (<S,u> mod g)-(<S,v> mod q)

9@ So (S(u®v)st mod q) mod 2 = Dec,(u)-Dec(v)

Multiplying More than Once?

@ s(UX®v)stis a bilinear formin s, so linear in S®S
@ Opening UV, S®S into vectors, we get
S(UXV)St = <vec(S®s),vec(UXV)>
@ Denote S =vec(sS®s), c'=vec(u®v), then:
@ Dec(C*) = (<s*,c*> mod q) mod 2
@ <S*,c*>mod q is still quite small, < (fg)? << q
@ \We can repeat the process

@ But dimension is squared, n 2 n? 2> n* 2> nd...
SO can repeat only a constant number of times

Reducing the Dimension

@ We have an “extended ciphertext” ¢~ with
respect to “extended secret key” S"=vec(sS®S)

@ Want a low-dimension ciphertext ¢’ with
respect to a “standard secret key” &’
@ Maybe S’=S, maybe not

@ Key idea: publish “an encryption” of s*
under s’to enable the translation

@ Hopefully just a matrix M(s™>s’) eZ dimisxdim(s7),
so that ¢’ = M-C” €z, dim(s’)

An Attempt that Almost Works

| b | = -UA+(2e+S”) mod g
M= A c Z dim(t’) x dim(s¥) e is short
/ R \E L)

@ Recall §'=(1]|t'), so s’M=t'A+b = 2e+s”
@ Let ¢’ = M-c"eZ,“™E), then mod q we have:
<S' C’>=5'MC =<2e+5,C">=<S",C>+2<e,C™>

@ /fonly c” was short, then 2<e,c™> was small, so
(<2e+s7,c"> mod q) = (<S7,c"> mod q)+2<e,c”™>
@ Hence (<s’,¢’> mod g) = (<s",c"™> mod q) (mod 2)
© So Dec,,(C’) = Decg (C")

8/17/2011 38

Can we Make ¢* Short?

@ Want to “represent” the long vector ¢* by some
short vector ¢’, perhaps in higher dimension

@ Example: ¢* =(76329, 31692, 43870)
@ |,-norm ~ 90000
represented by ¢’=(7,6,3,2,9, 3,1,6,9,2, 4,3,8,7,0)
@ |,-norm only ~ 21
@ |Later we will use binary rather than decimal

@ Note that we have a “linear relation”:
* 4 ! ! /
¢ =10"-¢c1611 ++10-€C4914 +C51015

Can we Make ¢* Short?

@ Denote C'=(cj], ..., Cx), i.e., ¢; is the i'th entry

@ Letc;; ...c;y be binary representation of c;
® ¢ = 5':0 ZjC;j

@ Let b; be the vector of j’th bits b,=(c{;, ..., ¢i ;)
@ soC'= l Zfb and <S",C>= Zl Zf(s*,bj)

@ let s —PowersOfZ S *|2s%4s™]...]2!s*) mod q,
and c” —BltDecomp(C (bglby [D, |...[by)

v Then <s™,cT7>=<s",c"> (mod q)
@ c" is short (in I,-norm), it is a 0-1 vector

8/17/2011 40

Dimension Reduction (Key-Switching)

@ Publish the matrix M(s™—>s’) eZdimis)x dim(s™)
@ Given the expanded ciphertext c”

@ Compute the “doubly expanded” ¢
@ Set ¢’ =M-c" mod @
@ We know that <s™",c"">=<s",c"> (mod Q)
® Also <5',¢’>=<5",C" >+2<e,c" > (mod Q)
@ (<s,c™> mod q) is small and so is 2<e,c” > hence
(<s’,c’>mod @) = (<S7,c">+2<e,c” > mod q)
@ Last equality is over the integers
=>» Dec,(C’) = Decg.(C7)

8/17/2011 41

Secu rity M(s* o) —UA+2e+s*
A

@ Under LWE, cannot tell M(s"=>s’) from random

@ Even if you know s™ (but not s°)
@ Assuming q is odd

Pf: if (A, r)=(A, tA+e) then (2A, 2r)=(2A, 2tA+2¢)

@ For odd q: (2A, 2r)= (A, 1),
(2A, 2tA+2¢e) = (A, tA+2¢)
@ = means that these distributions are identical
@ We get (A,) = (A, tA+2e)
@ |t follows that (A, r=(A, r+s’)=(A, tA+2e+s7)

The [BV'11b] “Leveled SWHE"

(Key-size 2linear in depth of circuits to evaluate)

@ KeyGen: choose random S;,S, ...,Sy eZq”
@ First entry in each s;is 1

@ Public key has matrices M():M(O%SO)
and M;,;=M(s;"">s;,,) for i=0,1,...,d-1
@ Then syM, = 2e,, and $;M; = 2e;+s;"

@ Enc(b): re.{0,1}M, c&M,r + [b,0,...,0], output (c,0)
@ Dec(c,l): Recover b€ (<s;,c> mod q) mod 2

9 For level-0: <S,,c>= sjMgr+ b = 2<€,r>+b
@ e, are short so 2{e,,) < g, hence no wraparound

The [BV'11b] “Leveled SWHE"

@ Ciphertexts in same level can be added directly
@ To multiply two level-I ciphertexts (Cy,1),(C,,1)

@ Compute the extended ¢ =vec(c,®cC,), the
“doubly extended” ¢, and set C’&M.Cc™

@ (c’,1+1) is a level-(1+1) ciphertext
@ Semantic-security follows because:
9 Under LWE, the M;’s are pseudo-random

9@ |f they were random then ciphertexts would have
no information about the encrypted plaintexts
©@ By leftover hash lemma

From SWHE to FHE

@ The “noise” in a ciphertext (C,1) is <S;,c> mod ¢

@ Noise magnitude roughly doubles on addition,
get squared on multiplication

@ Can only evaluate log-depth circuits before
the noise magnitude exceeds g

@ How to evaluate deeper circuits?
@ Squash & bootstrap,
@ Chimeric & bootstrap,
@ or an altogether new technique...

Modulus Switching

@ Converting C,S into C’,S’ s.t. for some p <
(<s’,c’> mod p) = (<S,c> mod gq) (mod 2)

@ [BV’11b]: Use with p < g to reduce decryption
complexity, can bootstrap without squashing
@ Modulus-switching & key-switching combined

@ The resulting ¢’ can be decrypted, but cannot
participate in any more homomorphic operations

@ [BGV’11] Use with p < g to reduce the noise,
can compute deeper circuits w/o bootstrapping
@ Roughly just by scaling, ¢’<round(p/q -C)
@ Rounding “appropriately”

Modulus Switching — Main Lemma

@ Let p<g be odd integers, C,S€Z," such that
|<s,c>mod g|<q/2-0q/p - ||s||1 S

v ”3”1 is the | norm of S ~ short .~

@ Let ¢’=rnd.(p/q -c), where rnd () rounds
each entry up or down so that ¢’=c (mod 2)

@ Then (i) (<S,c> mod p) = (<S,c> mod q) (mod 2)
and (ii)| <S,c> mod p| < §-|<S,C> mod g+ [|s||,

8/17/2011 47

Modulus Switching — Main Lemma

Proof:
@ For some K, <S,C>mod = <S,C>—K(€ [

@ Actually in a smaller mterval
-q .4
<S,C>—K(€ [—+— s ||1, ||S||]

_qq
82

@ Multiplying by p/q we get

P = p
<§,—C>—-xp € [—+ —-
> p € [+lslly, S-lisll;]

@ Replacing SC by ¢’=rnd (SC) adds error <||s||:

<S,C’>—Kp € [_p p] $O <S,C’> — kP =<S,C’> mod p

@ This also proves Part (ii)

8/17/2011 48

Modulus Switching — Main Lemma

Proof:
@ We know that <S,c> mod (q = <S,c>—k(Q and
<S,c’>mod p = <S,c’> — kp for the same
@ Since p,q are odd then kp=«kQg (mod 2)
@ Since ¢’=C (mod 2) then <s,¢’>=<Ss,c> (mod 2)
@ (<s,c’>mod p) =<s,C'>—xkp
=<S,C> —Kk((mod 2)
= (<s,c> mod q)

@ This proves part (i) |

Making s Small

@ If sSisrandom in Z," then [[s||; > Q

@ Luckily [ACPS 2009] proved that LWE is hard
even when S is a random short vector

@ chosen from the same distribution as the noise e
@ So we use this distribution for the secret keys

@ Alternatively, we could have used the trick with
BitDecomp() and PowersOf2()

Modulus Switching

@ Example: q=127, p=29, ¢=(175,212), s=(2,3)

® <5,c>modg=986—-8x127=-30

® p/q-c~(39.9, 48.4)
“@ To get ¢’=C (mod 2) we round down both entries
@ ¢’=(39,48)

@ <5,c’>mod p=222-8x29=-10

@ Indeed k=8 in both cases, —10=-—30 (mod 2)

@ The noise magnitude decreased from 30 to 10

30

. : . 10
©@ But the relative magnitude increased, — > —
29 7 127

8/17/2011

51

How Does Modulus-Switching Help?

@ Start with large modulus q,, small noise n < q,
@ After 15 multiplication, noise grows to = 772
@ Switch the modulus to ¢,~qy/n,

@ Noise similarly reduced to = n?/n =1

@ After next multiplication layer, noise again grows
to =~ 1%, switch to ,~q,/n to reduce it back to 1

@ Keep switching moduli after each layer

@ Setting 0;,1~0;/n
@ Until last modulus is too small, q,/2<n

How Does Modulus-Switching Help?

@ Example: gy~ 7n°

Using mod-switching

Without mod-switching

Fresh 5 5
ciphertexts n n n n
Level-1, 4

degree=2 N n

Level-2, 3

degree=4 N n

LEVE|-3, 2

degree=8 N N

Level-4,

degree=16 N N

8/17/2011

53

Putting It All Together

@ Use tensor-product for multiplication

@ Then reduce the dimension with M(s—>¢’)
@ First need to use PowersOf2/BitDecomp

@ Then reduce the noise by switching modulus
@ This works if the secret key S is short

@ Repeat until modulus is too small

The [BGV'11] “Leveled FHE"

@ d-level circuits, initial noise n
@ Also T £ n - poly(n) is another parameter
@ Set odd moduli q,,...,qq4 5.t ; & 797+

Kev generation:

@ Choose short secret s;€Zq", 1=0,...,d, first entry=1
« Set s, =vec(s;®s;)€Zq", s;*=PowersOf2q(s;")eZqt
@ Public key has My=M(0=25y) €Zg,"* { _3ni0g(q,) and
and Mi=M(s;*;2S;)€Zq. "Xt ti=n?log(q;)
@ The “short error vector” in M. is e;€Zq, i+
@ Then s;M, = 26, mod q, and $;M; = 2e:+s;” ;mod Q;_,

The [G'11] “Leveled FHE"

@ Enc, Dec, and homomorphic addition are the
same as in the leveled SWHE

@ Level-I ciphertexts are modulo g

@ To multiply two level-I ciphertexts, C,,C,:
@ c"<vec(c,®C,) €Z4™ (<s",c"> mod ;) =b,b,(mod 2)
@ ¢ € BitDecom(cY), (<s;",c">mod q;) =b,b,(mod 2)
@ ¢'<M.,,C7 mod g (<Si,1,¢"> mod ;) =h,b,(mod 2)
9 ¢ €rnd.(0;4/q; -C'), (<s;,,c> mod q;,y) =bby(mod 2)

@ Noise in C is bounded by (n?+stuff)/Tt <n€

8/17/2011 56

What We Have So Far

@ A leveled-FHE:

@ Public-key size at least linear in circuit depth
@ Can handle circuits of arbitrary polynomial depth

@ Security based on LWE

, 1 __ modulus

Z~ Thoise — (Poly(n))
“@ For “interesting” circuits this is more that poly(n)

@ Modulus gets smaller as we go up the circuit
“@ Lower levels somewhat more expensive

depth

Variants and Optimizations

@ Use bootstrapping to recover large modulus

@ Size of largest modulus depends on decryption
circuit, not the circuits that we evaluate

@ Can be made into “pure” FHE (non-leveled),
need to assume circular security

@ Base security on ring-LWE
@ LWE over a ring other than Z, (e.g., R=Z[X]/f(x))
@ Can use smaller dimension (e.g., dim=2)

@ Large plaintext space (not just Z,)
@ Must tweak the modulus-switching technique

Variants and Optimizations

@ Batching: pack many bits into each ciphertext
@ E.g., using the Chinese Remainders Theorem

@ An operation (+,x) on ciphertext acts separately on
each the packed bits

@ Combining these optimizations, can reduce the
overhead to O(A1)

@ Compare to 0(A3°) for the original blueprint

Current Status of HE constructions

® Many new ideas are at the table now
@ Still figuring out what works and what doesn’t

@ Looking at recent history, we can expect more
new ideas in the next few months/years

@ Implementation efforts are underway
@ Goal: get usable FHE
©@ At least for some applications

@ My personal guess: almost at hand,
perhaps only 2-3 years away

@ Many open problems remain

