Fully Homomorphic
Encryption over the Integers

Many slides borrowed
from Craig

Marten van Dijk!, Craig Gentry?,
Shai Halevi?, Vinod Vaikuntanathan?

1 - MIT, 2 - IBM Research

The Goal

I want to delegate processing of my data,
without giving away access to it.

Application: Cloud Computing

I want to delegate processing of my
data, without giving away access to it.

J Storing my files on the cloud
B Encrypt them to protect my information

B Later, I want to retrieve the files containing
“cloud” within 5 words of “computing”.

» Cloud should return only these (encrypted) files,
without knowing the key

Computing on Encrypted Data

d Separating processing from access via
encryption:

B I will encrypt my stuff before sending it to
the cloud

B They will apply their processing on the
encrypted data, send me back the
processed result

B] will decrypt the result and get my answer

Application: Private Google Search

I want to delegate processing of my
data, without giving away access to it.

1 Private Internet search

B Encrypt my query, send to Google

» Google cannot “see” my query, since it does not
know my key

B] still want to get the same results
» Results would be encrypted too

J Privacy combo: Encrypted query on encrypted data

An Analogy: Alice’s Jewelry Store

J Alice’s workers need to assemble raw
materials into jewelry

0 But Alice.i +ied about theft

Kers process the raw
: ,

o

An Analogy: Alice’s Jewelry Store

d Alice puts materials in locked glove box
B For which only she has the key

J Workers assemble jewelry in the box
J Alice unlocks box to get “results”

The Analogy

d Encrypt: putting things inside the box

B Anyone can do this (imagine a mail-drop)
B c ¢ Enc(m)

d Decrypt: Taking things out of the box
B Only Alice can do it, requires the key
B m* < Dec(c*)

4 Process: Assembling the jewelry
B Anyone can do it, computing on ciphertext
B c* <& Process(cy,...,C,)

d m* = Dec(c*) is “the ring”, made from
“raw materials” m,

Public-key Encryption

d Three procedures: KeyGen, Enc, Dec
B (sk,pk) € KeyGen($)
» Generate random public/secret key-pair

B c € Enc, (m)
» Encrypt a message with the public key

B m < Dec,(c)
» Decrypt a ciphertext with the secret key

d E.g., RSA: c€me mod N, mé&cd mod N
B (N,e) public key, d secret key

Homomorphic Public-key Encryption

J Another procedure: Eval (for Evaluate)
B c < Eval(pk, f, ¢q,...,C)

Encryptions of
inputs my,....m, to f

Encryption of f(my,...,m,).

I.e., Dec(sk, c) = f(my, ..m,)

® No info about my, ..., m,, f(m,, ...Mm,) is leaked

m f(m,, ..m,) is the “ring” made from raw
materials m,, ..., m, inside the encryption box

Can we do it?

d As described so far, sure..
m (I, c,...,Cp) = c* €Eval, (1], cy,...,Cp,)
B Dec,/(c*) decrypts individual ¢;'s, apply II
(the workers do nothing, Alice assembles
the jewelry by herself)

This is the main
challenge

Of course, this is cheating:

J We want c” to remain small
B independent of the size of I1
B “Compact” homomorphic encryption

d We may also want II to remain secret

Can be done with
“generic tools”
(Yao’s garbled
circuits)

c < Eval(pk, f, c;

Previous Schemes Dec(sk. ¢) < fm "

d Only "somewhat homomorphic”
B Can only handle some functions f

d RSA works for MULT function (mod N)
C=¢C X..X¢=(mM; X..xm)e(mod N)

“Somewhat Homomorphic” Schemes

J RSA, ElGamal work for MULT mod N
1 GoMi, Paillier work for XOR, ADD
J BGNO5 works for quadratic formulas

Schemes with large ciphertext

d SYY99 works for shallow fan-in-2 circuits
B c* grows exponentially with the depth of f

d IsPe07 works for branching program
B c* grows with length of program

d AMGHOS8 for low-degree polynomials
B c* grows exponentially with degree

Connection with 2-party computation

d Can get “homomorphic encryption” from
certain protocols for 2-party secure
function evaluation

B E.g., Yao86

 But size of c*, complexity of decryption,
more than complexity of the function f

B Think of Alice assembling the ring herself
d These are solving a different problem

A Recent Breakthrough

d Genrty09: A bootstrapping technique

Scheme E can handle its

A

own decryption function

Scheme E* can
handle any function

d Gentry also described a candidate

“bootstrappable” scheme

B Based on ideal lattices

The Current Work

d A second “bootstrappable” scheme
B Very simple: using only modular arithmetic

 Security is based on the hardness of
finding “approximate-GCD”

Outline

1. Homomorphic symmetric encryption
d Very simple

2. Turning it into public-key encryption
B Result is "almost bootstrappable”

3. Making it bootstrappable
B Similar to Gentry'09
As much as

4. Security we have time
5. Gentry’s bootstrapping technique

Not today

A homomorphic symmetric encryption

1 Shared secret key: odd number p

J To encrypt a bit m:
B Choose at random small r, large g

The Aoise Noise much
B Output c = m+2rw
» Ciphertext is close to a multiple of p
» m = LSB of distance to nearest multiple of p

d To decrypt c:

B Output m = (c mod p) mod 2
> m c-p-e[c/p] mod 2

c - [c/p] mod 2

LSB(c) XOR LSB([c/p])

Homomorphic Public-Key Encryption

J Secret key is an odd p as before

J Public key is many “encryptions of 0”
B x =[qp + 2r;] ,fori=1,2,..,t

d Enc, (m) =[subset-sum(x;’s)+m],,

d Dec,(c) = (c mod p) mod 2

Why is this homomorphic?

 Basically because:

B If you add or multiply two near-multiples
of p, you get another near multiple of p...

Why is this homomorphic?

Jdc,=q,p+2r;+m,;, c,=q,p+2r,+m,

Distance to nearest multiple of p

dci+c, = (q,+9,)p + 2(ry+r,) + (My+m,)
B 2(r,+r,)+(m,+m,) still much smaller than p
>c,+Cc, mod p = 2(r,+r,) + (m;+m,)

d ¢, X ¢, =(¢,9,+9,6,-q,G,)P
aes - i= == Sesp= B =t
B 2(2r,r,+...) still much smaller than p
=>C,XC, mod p = 2(2r;r,+...) + m;m,

Why is this homomorphic?

dc,=my+2r;+q,p, ..., =M +2r+q,p

d Let f be a multivariate poly with integer
coefficients (sequence of +’s and x's)
d Let c = Eval (f, ¢4, ..., ¢) = f(cy, ...y C)

Suppose this noise is much smaller than p
m f(c,, .., c)=Ff(m+2r;, ..., m+2r,) + gp
= f(my, ..., my) + 2r + gp

® Then (c mod p) mod 2 = f(m,, ..., m;) mod 2

That’'s what we want!

How homomorphic is this?

d Can keep adding and multiplying until the
“noise term” grows larger than p/2

B Noise doubles on addition, squares on
multiplication

B Multiplying d ciphertexts = noise of size ~24dn
d We choose r ~ 2", p ~ 2™ (and q ~ 2™)

B Can compute polynomials of degree n before
the noise grows too large

Keeping it small

d The ciphertext’s bit-length doubles with
every multiplication
B The original ciphertext already has n® bits
B After ~log n multiplications we get ~n’ bits
d We can keep the bit-length at n® by
adding more “encryption of zero”
B |y, |=n%+1, |y,|=n®+2, ..., |y, |=2n°

B Whenever the ciphertext length grows,
setc"=cmody, mody, .. mody,

Bootstrappable yet?

c/p, rounded to

d Almost, but not quite: nearest integer

1 Decryption is m = LSB(c) & LSB([c/p])
B Computing [c/p] takes degree O(n)

B But O() is more than one (maybe 77?7?)
» Integer c has ~n-~ bits

B Our scheme only supports degree < n

d To get a bootstrappable scheme, use
Gentry09 technique to “squash the
decryption circuit” »|

How do we “simplify” decryption?

m
T
Old
decryption Dece
algorithm
£ Y N)
sk C

d Idea: Add to public key another “hint” about sk

B Of course, hint should not break secrecy of encryption

d With hint, anyone can post-process the ciphertext,
leaving less work for Dec.« to do

d This idea is used in server-aided cryptography.

How do we “simplify” decryption?

m
Ne 1
Old approach
decryption /D/\
= =Cer [Processed]
m "M 11111 ciphertext c*
- N
1 The hint sk*x c* <
about sk ™M1

|n pub key
Dec.
Post-
M1 MM Process
sk C

(EENEEENEEEE) TTTT
> f(sk,)

Hint in pub key lets anyone post-process the ciphertext,
leaving less work for Decg. to do.

Squashing the decryption circuit

d Add to public key many real numbers
m d,d,, .. d e [0,2] (with“sufficient precision”)
B 3 sparse set S for which £_-d. = 1/p mod 2
4 Enc, Eval output y;=c x d; mod 2, i=1,...,t
B Together with c itself

d New secret key is bit-vector oy,...,0;
B 5=1if ieS, 6;=0 otherwise
4 New Dec(c) is c - [o;¥;] mod 2

B Can be computed with a “low-degree circuit”
because S is sparse

A Different Way to Add Numbers

a;'s in binary
representation

Our problem: t is large (e.g. n®)

‘

<

\

d1.0
d3,0
d3,0
d4,0
ds, o

d¢,0

1 Decg«(s,c)= LSB(c) XOR LSB([X,

Q
W
‘- ~ ‘- - ~
1 1 1 1 1

d

/_)%

oyil)

.-loa t
,-log t
,-log t
,-log t

,-log t

at,—Iog t

A Different Way to Add Numbers

I:)O,qu t

(Let b, be)
the binary
rep of
Hamming

_ weight)

a1.0
d3,0
d3,0
d4,0

A Different Way to Add Numbers

(Let b, be)
the binary
rep of

Hamming

_ weight)

d1.0
d3,0
d3,0
d4,0
ds,0

a1,-Ioc1 t
a2,-Iog t
a3,—Iog t
a4,-Iog t

a5,—|og t

n,-log t

A Different Way to Add Numbers

7 Let = be) d1.0 di.-1

the binary ds.0 dy 1

rep of ds, o ds .1

Hamming

= weight = d4,0 dg,-1

ds,0 ds, -1
at,O at,-l t,-log t
—

I:)O,IOClt bO,l I:)O 0
I3-1,Iog t b-l 1 b 1,0

A Different Way to Add Numbers

 Onlylogt) d1.0 di.-1 A1 -loa t
numbers with ds o dr 4 Ay -log t
Iog t bits of ds g ds 4 A3 _jog t
precision. Easy = = =
= to handle. -~ 4,0 4,-1 4,-log t
ds g ds 1 ds _jog t
di o di 1 A log t
I:)O,IOClt I:)0,1 I:)0,0
I:)-1,Iogt b 1,1 I:)-1,0
I:)-Iog nilogt - I:)-Iog t,1 I:)-Iog t,0

Computing Sparse Hamming Wgt.

di o
ds o

ds g
ds0
ds o

d¢,0

OV
‘- - ‘- - -
1 1 1 1 1
— = = = Y

~loa n
,~-log n
a3,-|og n
,-log n

a5,—Iog n

at,—Iog t

Computing Sparse Hamming Wgt.

a1,-Ioc1 t

a4,-Iog t

at,-Iog t

Computing Sparse Hamming Wgt.

d Binary representation of the Hamming
weight of a = (a4, ..., a,)e{0,1}!
B The i'th bit of HW(a) is e,i(a) mod?2
B e is elementary symmetric poly of degree k
» Sum of all products of k bits
d We know a priori that weight < |S|
B > Only need upto e,.pq s5(a)
B - Polynomials of degree upto |S|

d Set |S| ~ n, then E* is bootstrappable.

> |

Security

d The approximate-GCD problem:

B Input: integers wy, Wy,..., W

» Chosen as w, = g;p + r, for a secret odd p

> pe¢l0,P], qe4l0,Q], ries[O,R] (with R < P < Q)
B Task: find p

d Thm: If we can distinguish Enc(0)/Enc(1)
for some p, then we can find that p

B Roughly: the LSB of r. is a “hard core bit” >|
= Scheme is secure if approx-GCD is hard

d Is approx-GCD really a hard problem?

Hard-core-bit theorem

A. The approximate-GCD problem:

B Input: w, =qgp + r, (i=0,...,t)
> peq[0,P], aie4[0,Q], res[0,R] (with R" < P < Q)

B Task: find p
B. The cryptosystem
B Input: x, = gp + 2r, (i=0,...,t), c=gp+2r+m
> pe4[0,P], qe4[0,Q], re [0,R] (with R < P < Q)
B Task: distinguish m=0 from m=1
d Thm: Solution to B = solution to A
B small caveat: R’ smaller than R

Proof outline

d Input: w, = gp + r; (i=1,...,t)
1 Use the w;’s to form a public key
B This is where we need R'>R

d Amplify the distinguishing advantage
B From any noticeable € to almost 1

1 Use reliable distinguisher to learn q;
B Using the binary GCD procedure

3 Finally p = round(w,/q,)

Use the w.'s to form a public key

O We have w=g,p+r, need x.=q.'p+2r;
B Setting x, = 2w, yields wrong distribution
J Reorder w;'s so w, is the largest one

B Check that w, is odd, else abort
B Also hope that q, is odd (else may fail to find p)

> W, 0dd, g, odd = ry is even
O X,=wy+2p,, X=(2w; +2p;) mod w, for i>0
B The p;'s are random < R

d Correctness:

1. ri+p; distributed almost identically to p;
» Since R>R’ by a super-polynomial factor
2. 2qg, mod q, is random in [q,]

Amplify the distinguishing advantage

d Given an integer z=gp+r, with r<R’:

Set c = [z+ m+2p + subset-sum(x;'s)] mod X,

B For random p<R, random bit m
1 c is a random ciphertext wrt the x.’s

B p>r's, so p+r;’s distributed like p

B (subset-sum(qg;)’s mod q,) random in [q,]
dcmodp mod2 =r+m mod 2

B A guess for c mod p mod 2 = vote for r mod 2

d Choose many random c's, take majority
B Noticeable advantage = Reliable r mod 2

Use reliable distinguisher to learn g,

d From z=qgp+r, can get r mod 2
B Note: z = g+r mod 2 (since p is odd)
B So(gmod2) =(rmod 2) & (zmod 2)

4 Given z,, z,, both near multiples of p
‘®m Get b, := g, mod 2, if z,<z, swap them
m If b,=b,=1, setz,:=z,-z,, b,:=b,-b,
» At least one of the b,’'s must be zero now
B For any b=0 set z, := floor(z/2)

> new-q d-q,/2
Kl Repeat until one zZis-zero, output the other
z=(2s)p+r=> z/2 =s®

= floor(z/2) = sp + floor(r/2

Binary-GCD
LA

Use reliable distinguisher to learn q;

d z=q, p+r,, i=1,2, z: —Blnary GCD(z,,2,)

= Then z' = GCD*(q, 0, P FF—=_ e cddpat,

® For random q,,q9,, PriGCD(q,,9,)=1] ~ 0.6
d Try (say) z':=Binary-GCD(w,W,_,)

B Hope that z=1-p+r
> Else try again with Binary-GCD(z',w,_,), etc.

d Run Binary-GCD(w,,z)
B The b, bits spell out the bits of g,

4 Once you learn g, then
B round(w,/q,) = p+round(r/q,) = p

> |

Hardness of Approximate-GCD

d Several lattice-based approaches for
solving approximate-GCD

B Related to Simultaneous Diophantine
Approximation (SDA) |

B Studied in [Hawgrave-GrahamO1]
> We considered some extensions of his attacks
3 All run out of steam when |q,|>|p]?
B In our case |[p|~n?, |q|~n>> |p]|?

Relation to SDA

dx,=¢qgp+r(rh<xpxgq),i=0,1,.2,..

By, = X/X, = (qp + r;)/(qep + 1ry)
= (q; + (r/p))/(dy + (ro/P))
> = (q,+s,)/q,, With s, ~ r/p < 1

B yl, y2, ... is an instance of SDA
> (, is a denominator that approximates all y;’s

d Use Lagarias’es algorithm to try and
solve this SDA instance

B Find g, then p=round(x,/q,)

Lagarias’es SDA algorithm

d Consider the rows of this matrix B:

B They span dim-(t+1) lattice @Xl X3 - Xt\
_XO
B= _XO

d <qgy,94,---,9:>B is short
B 1stentry: g,R < QR _ -Xo/
B /™ entry (i>1): go(qp+r)-q,(dop+ry)=0qgh-a;fg
» Less than Q-R in absolute value
> Total size less than Q-R-t

» VS. size ~Q:-P (or more) for the basis vectors

d Hopefully we will find it with a lattice-
reduction algorithm (LLL or variants)

Will this algorithm succeed? { Xﬁﬂj

3a Is <q,,44,-..,9,>'B shortest in Iw
B Is it shorter than Vt-det(B)/t+1 ? SEE
> det(B) is small-ish (due to R in the corner)
B Need ((QP)IR)V/t*+1 > QR
o t+1 > (logQ +logP -log R) / (log P - log R)
~ log Q/log P
d log Q = o(log?P) = need t=w(log P)
d Quality of LLL & co. degrades with t
B Only finds vectors of size ~ 2¥2:shortest
> or 2¥2-2: for any constant >0
B t=w(log P) & 2:-QR > det(B)/t+1
B Contemporary lattice reduction is not strong enough

Why this algorithm fails

auxiliary solutions
(Minkowski’s bound)

converges to ~ logQ+logP

Q 1 What LLL can find
8 min(,purple)+ct

5+

(@)}

8 .

)

N

=il

the solution we
are seeking

blue line
remains above
purple line —

logQ/logP

i dl

Conclusions

d Fully Homomorphic Encryption is a very
powerful tool

d Gentry09 gives first feasibility result
B Showing that it can be done “in principle”

d We describe a "conceptually simpler”
scheme, using only modular arithmetic

d What about efficiency?

B Computation, ciphertext-expansion are
polynomial, but a rather large one...

d Improving efficiency is an open problem

Extra credit

1 The hard-core-bit theorem

J Connection between approximate-GCD
and simultaneous Diophantine approx.

d Gentry’s technique for “squashing” the
decryption circuit

Thank you

