Fully Homomorphic Encryption over the Integers

Many slides borrowed
from Craig

Marten van Dijk ${ }^{1}$, Craig Gentry², Shai Halevi ${ }^{2}$, Vinod Vaikuntanathan ${ }^{2}$

1 - MIT, 2 - IBM Research

The Goal

I want to delegate processing of my data, without giving away access to it.

Application: Cloud Computing

I want to delegate processing of my data, without giving away access to it.

\square Storing my files on the cloud

- Encrypt them to protect my information
- Later, I want to retrieve the files containing "cloud" within 5 words of "computing".
$>$ Cloud should return only these (encrypted) files, without knowing the key

Computing on Encrypted Data

\square Separating processing from access via encryption:

- I will encrypt my stuff before sending it to the cloud
- They will apply their processing on the encrypted data, send me back the processed result
- I will decrypt the result and get my answer

Application: Private Google Search

> I want to delegate processing of my data, without giving away access to it.
\square Private Internet search

- Encrypt my query, send to Google
$>$ Google cannot "see" my query, since it does not know my key
- I still want to get the same results
> Results would be encrypted too
\square Privacy combo: Encrypted query on encrypted data

An Analogy: Alice's Jewelry Store

\square Alice's workers need to assemble raw materials into jewelry
\square But Alice is worried about theft
How can the workers process the raw materials without having access to them?

An Analogy: Alice's Jewelry Store

\square Alice puts materials in locked glove box

- For which only she has the key
\square Workers assemble jewelry in the box
\square Alice unlocks box to get "results"

The Analogy

\square Encrypt: putting things inside the box - Anyone can do this (imagine a mail-drop) - $c_{i} \leftarrow \operatorname{Enc}\left(m_{i}\right)$
\square Decrypt: Taking things out of the box - Only Alice can do it, requires the key - m* \& Dec(c*)
\square Process: Assembling the jewelry

- Anyone can do it, computing on ciphertext

■ $c^{*} \leftarrow \operatorname{Process}\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}\right)$
$\square m^{*}=\operatorname{Dec}\left(c^{*}\right)$ is "the ring", made from "raw materials" mi

Public-key Encryption

\square Three procedures: KeyGen, Enc, Dec

- (sk,pk) \leftarrow KeyGen(\$)
$>$ Generate random public/secret key-pair
- c $\leftarrow E \operatorname{Enc}_{\mathrm{pk}}(\mathrm{m})$
$>$ Encrypt a message with the public key
- $\mathrm{m} \leftarrow \operatorname{Dec}_{\mathrm{sk}}(\mathrm{c})$
> Decrypt a ciphertext with the secret key
\square E.g., RSA: $c \leftarrow m^{e} \bmod N, m \leftarrow c^{d} \bmod N$ - (N, e) public key, d secret key

Homomorphic Public-key Encryption

\square Another procedure: Eval (for Evaluate)

- $c^{*} \leftarrow \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$

function

Encryption of $f\left(m_{1}, \ldots, m_{t}\right)$.
I.e., $\operatorname{Dec}(s k, c)=f\left(m_{1}, \ldots m_{t}\right)$

- No info about $m_{1}, \ldots, m_{t}, f\left(m_{1}, \ldots m_{t}\right)$ is leaked
- $f\left(m_{1}, \ldots m_{t}\right)$ is the "ring" made from raw materials m_{1}, \ldots, m_{t} inside the encryption box

Can we do it?

A As described so far, sure..

- $\left(\Pi, c_{1}, \ldots, c_{n}\right)=c^{*} \leftarrow \operatorname{Eval}_{p k}\left(\Pi, c_{1}, \ldots, c_{n}\right)$
- $\operatorname{Dec}_{\text {sk }}\left(\mathrm{c}^{*}\right)$ decrypts individual c_{i} 's, apply Π
(the workers do nothing, Alice assembles the jewelry by herself)

Of course, this is cheating:
\square We want c* to remain small

- independent of the size of Π
- "Compact" homomorphic encryption

Can be done with
"generic tools"
(Yao's garbled circuits)
\square We may also want Π to remain secret

Previous Schemes $c \leftarrow \operatorname{Eval}\left(p k, f, c_{1}, \ldots, c_{t}\right)$, $\operatorname{Dec}(s k, c)=f\left(m_{1}, \ldots, m_{t}\right)$

\square Only "somewhat homomorphic"

- Can only handle some functions f
\square RSA works for MULT function (mod N)

$$
c=c_{1} \times \ldots \times c_{t}=\left(m_{1} \times \ldots \times m_{t}\right)^{e}(\bmod N)
$$

"Somewhat Homomorphic" Schemes

\square RSA, ElGamal work for MULT mod N
\square GoMi, Paillier work for XOR, ADD
BGN05 works for quadratic formulas

Schemes with large ciphertext

SYY99 works for shallow fan-in-2 circuits

- c* grows exponentially with the depth of f
\square IsPe07 works for branching program
- c* grows with length of program
\square AMGH08 for low-degree polynomials
- c* grows exponentially with degree

Connection with 2-party computation

\square Can get "homomorphic encryption" from certain protocols for 2-party secure function evaluation

- E.g., Yao86

But size of c^{*}, complexity of decryption, more than complexity of the function f

- Think of Alice assembling the ring herself
\square These are solving a different problem

A Recent Breakthrough

- Genrty09: A bootstrapping technique

Scheme E can handle its own decryption function	Scheme E^{\star} can handle any function

\square Gentry also described a candidate "bootstrappable" scheme

- Based on ideal lattices

The Current Work

\square A second "bootstrappable" scheme

- Very simple: using only modular arithmetic
\square Security is based on the hardness of finding "approximate-GCD"

Outline

1. Homomorphic symmetric encryption

- Very simple

2. Turning it into public-key encryption

- Result is "almost bootstrappable"

3. Making it bootstrappable

- Similar to Gentry'09

4. Security

As much as
we have time
5. Gentry's bootstrapping technique

Not today

A homomorphic symmetric encryption

\square Shared secret key: odd number p
\square To encrypt a bit m:

- Choose at random small r, large q
- Output $\mathrm{c}=\mathrm{m}+2 \mathrm{r}+\mathrm{pq} \quad \begin{gathered}\text { Noise much } \\ \text { smaller than } \mathrm{p}\end{gathered}$
$>$ Ciphertext is close to a multiple of p
$\Rightarrow \mathrm{m}=$ LSB of distance to nearest multiple of p
\square To decrypt c:
- Output $m=(c \bmod p) \bmod 2$
$>m=c-p \cdot[c / p] \bmod 2$
$=c-[c / p] \bmod 2$
$=\operatorname{LSB}(c)$ XOR LSB([c/p])

Homomorphic Public-Key Encryption

\square Secret key is an odd p as before
\square Public key is many "encryptions of 0 "

- $x_{i}=\left[q_{i} p+2 r_{i}\right]_{x 0}$ for $i=1,2, \ldots, t$
$\square E n c_{p k}(m)=\left[\text { subset-sum }\left(x_{i} \text { 's }\right)+m\right]_{x 0}$
$\square \operatorname{Dec}_{\mathrm{sk}}(\mathrm{c})=(\mathrm{c} \bmod \mathrm{p}) \bmod 2$

Why is this homomorphic?

\square Basically because:

- If you add or multiply two near-multiples of p, you get another near multiple of p...

Why is this homomorphic?

$c_{1}=q_{1} p+2 r_{1}+m_{1}, \quad c_{2}=q_{2} p+2 r_{2}+m_{2}$
$\square c_{1}+c_{2}=\left(q_{1}+q_{2}\right) p+2\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right)$

- $2\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right)$ still much smaller than p
$\rightarrow c_{1}+c_{2} \bmod p=2\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right)$
$\square c_{1} \times c_{2}=\left(c_{1} q_{2}+q_{1} c_{2}-q_{1} q_{2}\right) p$ $+2\left(2 r_{1} r_{2}+r_{1} m_{2}+m_{1} r_{2}\right)+m_{1} m_{2}$
- $2\left(2 r_{1} r_{2}+\ldots\right)$ still much smaller than p
$\rightarrow \mathrm{c}_{1} \times \mathrm{c}_{2} \bmod p=2\left(2 \mathrm{r}_{1} r_{2}+\ldots\right)+\mathrm{m}_{1} \mathrm{~m}_{2}$

Why is this homomorphic?

$\square c_{1}=m_{1}+2 r_{1}+q_{1} p, \ldots, c_{t}=m_{t}+2 r_{t}+q_{t} p$
\square Let f be a multivariate poly with integer coefficients (sequence of +'s and x 's)
\square Let $\mathrm{c}=\operatorname{Eval}_{\mathrm{pk}}\left(\mathrm{f}, \mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{t}}\right)=\mathrm{f}\left(\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{t}}\right)$
Suppose this noise is much smaller than p
■ $f\left(c_{1}, \ldots, c_{t}\right)=f\left(m_{1}+2 r_{1}, \ldots, m_{t}+2 r_{t}\right)+q p$

$$
=f\left(m_{1}, \ldots, m_{t}\right)+2 r+q p
$$

- Then $(c \bmod p) \bmod 2=f\left(m_{1}, \ldots, m_{t}\right) \bmod 2$

That's what we want!

How homomorphic is this?

\square Can keep adding and multiplying until the "noise term" grows larger than $\mathrm{p} / 2$

- Noise doubles on addition, squares on multiplication
- Multiplying d ciphertexts \rightarrow noise of size $\sim 2^{\text {dn }}$
\square We choose $r \sim 2^{n}, p \sim 2^{n^{2}}$ (and $q \sim 2^{n^{n}}$)
- Can compute polynomials of degree n before the noise grows too large

Keeping it small

\square The ciphertext's bit-length doubles with every multiplication

- The original ciphertext already has n^{6} bits
- After $\sim \log n$ multiplications we get $\sim n^{7}$ bits
\square We can keep the bit-length at n^{6} by adding more "encryption of zero"
- $\left|y_{1}\right|=n^{6}+1,\left|y_{2}\right|=n^{6}+2, \ldots,\left|y_{m}\right|=2 n^{6}$
- Whenever the ciphertext length grows, set $c^{\prime}=c \bmod y_{m} \bmod y_{m-1} \ldots \bmod y_{1}$

Bootstrappable yet?

\square Almost, but not quite:

c / p, rounded to

 nearest integer\square Decryption is $m=\operatorname{LSB}(c) \oplus \operatorname{LSB}([c / p])$

- Computing [c / p] takes degree $\mathrm{O}(\mathrm{n})$
- But O() is more than one (maybe 7 ??)
$>$ Integer c has $\sim n^{5}$ bits
- Our scheme only supports degree $\leq n$
\square To get a bootstrappable scheme, use Gentry09 technique to "squash the decryption circuit"

How do we "simplify" decryption?

\square Idea: Add to public key another "hint" about sk

- Of course, hint should not break secrecy of encryption
- With hint, anyone can post-process the ciphertext, leaving less work for $\operatorname{Dec}_{E^{*}}$ to do
\square This idea is used in server-aided cryptography.

How do we "simplify" decryption?

Hint in pub key lets anyone post-process the ciphertext, leaving less work for Dec $_{E^{*}}$ to do.

Squashing the decryption circuit

\square Add to public key many real numbers

- $d_{1}, d_{2}, \ldots, d_{t} \in[0,2]$ (with "sufficient precision")
- \exists sparse set S for which $\Sigma_{i \in S} d_{i}=1 / p \bmod 2$
\square Enc, Eval output $\psi_{i}=c \times d_{i} \bmod 2, i=1, \ldots, t$ - Together with c itself
\square New secret key is bit-vector $\sigma_{1}, \ldots, \sigma_{t}$
- $\sigma_{i}=1$ if $i \in S, \sigma_{i}=0$ otherwise
\square New $\operatorname{Dec}(\mathrm{c})$ is $\mathrm{c}-\left[\Sigma_{i} \sigma_{i} \Psi_{i}\right] \bmod 2$
- Can be computed with a "low-degree circuit" because S is sparse

A Different Way to Add Numbers

$\square \operatorname{Dec}_{\mathrm{E} *}(\mathrm{~s}, \mathrm{c})=\operatorname{LSB}(\mathrm{c}) \operatorname{XOR} \operatorname{LSB}\left(\left[\Sigma_{\mathrm{i}} \sigma_{\mathrm{i}} \psi_{\mathrm{i}}\right]\right)$

$a_{i}{ }^{\prime}$ s in binary representation	$\mathrm{a}_{1,0}$	$\mathrm{a}_{1,-1}$...	$\mathrm{a}_{1, \text {-loat }}$
	$a_{2,0}$	$a_{2,-1}$...	$a_{2,-\log t}$
	$\mathrm{a}_{3,0}$	$a_{3,-1}$	\ldots	$\mathrm{a}_{3,-\log t}$
	$a_{4,0}$	$a_{4,-1}$...	$a_{4,-\log t}$
	$a_{5,0}$	$a_{5,-1}$...	$a_{5,-\log t}$
	...	\ldots	...	\ldots
	$a_{t, 0}$	$\mathrm{a}_{\mathrm{t},-1}$...	$a_{t,-\log t}$

Our problem: t is large (e.g. n^{6})

A Different Way to Add Numbers

A Different Way to Add Numbers

			$\mathrm{a}_{1,0}$	$a_{1,-1}$	\ldots	$\mathrm{a}_{1,- \text { loa } t}$
	Let b_{-1} be the binary rep of Hamming weight					
			$\mathrm{a}_{2,0}$	$\mathrm{a}_{2,-1}$	\ldots	$\mathrm{a}_{2,-\log t}$
			$\mathrm{a}_{3,0}$	$\mathrm{a}_{3,-1}$	\ldots	$\mathrm{a}_{3,-\mathrm{log} \mathrm{t}}$
			$\mathrm{a}_{4,0}$	$\mathrm{a}_{4,-1}$...	$\mathrm{a}_{4,-\operatorname{log~t}}$
			$a_{5,0}$	$a_{5,-1}$	\ldots	$\mathrm{a}_{5,-\log t}$
			\ldots	\ldots	...	\ldots
			$\mathrm{a}_{\mathrm{t}, 0}$	$a_{t,-1}$...	$\mathrm{a}_{\mathrm{n},-\log \mathrm{t}}$
$b_{0,109 t}$	\ldots	$\mathrm{b}_{0,1}$	$\mathrm{b}_{0,0}$			
	$\mathrm{b}_{-1, \log t}$...	$\mathrm{b}_{-1,1}$	$\mathrm{b}_{-1,0}$		

A Different Way to Add Numbers

A Different Way to Add Numbers

Computing Sparse Hamming Wgt.

	$a_{1,0}$	$a_{1,-1}$	\ldots
$a_{2,0}$	$a_{2,-1}$	\ldots	$a_{1,-\log n}$
$a_{3,0}$	$a_{3,-1}$	\ldots	$a_{2,-\log n}$
$a_{4,0}$	$a_{4,-1}$	\ldots	$a_{4,-\log n}$
$a_{5,0}$	$a_{5,-1}$	\ldots	$a_{5,-\log n}$
\ldots	\ldots	\ldots	\ldots
$a_{t, 0}$	$a_{t,-1}$	\ldots	$a_{t,-\log t}$

Computing Sparse Hamming Wgt.

	$a_{1,0}$	$a_{1,-1}$	\ldots
0	0	\ldots	$a_{1,- \text { loa } t}$
0	0	\ldots	0
$a_{4,0}$	$a_{4,-1}$	\ldots	$a_{4, \text { log } t}$
0	0	\ldots	0
\ldots	\ldots	\ldots	\ldots
$a_{t, 0}$	$a_{t,-1}$	\ldots	$a_{t,-\log t}$

Computing Sparse Hamming Wgt.

\square Binary representation of the Hamming weight of $\mathbf{a}=\left(a_{1}, \ldots, a_{t}\right) \in\{0,1\}^{t}$

- The i'th bit of $\operatorname{HW}(\mathbf{a})$ is $\mathrm{e}_{2}(\mathbf{a}) \bmod 2$
- e_{k} is elementary symmetric poly of degree k $>$ Sum of all products of k bits
\square We know a priori that weight $\leq|S|$
- \rightarrow Only need upto $e_{2 \wedge[\log |S|]}(\mathbf{a})$
$\square \rightarrow$ Polynomials of degree upto $|S|$
\square Set $|S| \sim n$, then E^{*} is bootstrappable.

Security

\square The approximate-GCD problem:

- Input: integers $w_{0}, w_{1}, \ldots, w_{t_{1}}$
$>$ Chosen as $w_{i}=q_{i} p+r_{i}$ for a secret odd p
$>p \epsilon_{\phi}[0, P], q_{i} \in_{\phi}[0, Q], r_{i} \in_{\phi}[0, R]$ (with $R \ll P \ll Q$)
- Task: find p

Thm: If we can distinguish Enc(0)/Enc(1) for some p, then we can find that p

- Roughly: the LSB of r_{i} is a "hard core bit"
\rightarrow Scheme is secure if approx-GCD is hard
\square Is approx-GCD really a hard problem?

Hard-core-bit theorem

A. The approximate-GCD problem:

- Input: $w_{i}=q_{i} p+r_{i}(i=0, \ldots, t)$
$>P \in_{\$}[0, P], q_{i} \in_{\$}[0, Q], r_{i} \in_{\$}\left[0, R^{\prime}\right]$ (with $R^{\prime} \ll P \ll Q$)
- Task: find p
B. The cryptosystem
- Input: $x_{i}=q_{i} p+2 r_{i}(i=0, \ldots, t), c=q p+2 r+m$
$\Rightarrow p \in_{\phi}[0, P], \mathrm{q}_{\mathrm{i}} \in_{\phi}[0, \mathrm{Q}], \mathrm{r}_{\mathrm{i}} \in_{\phi}[0, R]$ (with $\mathrm{R} \ll \mathrm{P} \ll \mathrm{Q}$)
- Task: distinguish $m=0$ from $m=1$
\square Thm: Solution to $B \rightarrow$ solution to A
- small caveat: R^{\prime} smaller than R

Proof outline

\square Input: $w_{i}=q_{i} p+r_{i}(i=1, \ldots, t)$
\square Use the w_{i} 's to form a public key

- This is where we need $R^{\prime}>R$
\square Amplify the distinguishing advantage - From any noticeable ε to almost 1
\square Use reliable distinguisher to learn q_{t} - Using the binary GCD procedure
\square Finally $p=\operatorname{round}\left(w_{t} / q_{t}\right)$

Use the w_{i} 's to form a public key

\square We have $w_{i}=q_{i} p+r_{i}$, need $x_{i}=q_{i}^{\prime} p+2 r_{i}^{\prime}$

- Setting $x_{i}=2 w_{i}$ yields wrong distribution
\square Reorder w_{i}^{\prime} 's so w_{0} is the largest one
- Check that w_{0} is odd, else abort
- Also hope that q_{0} is odd (else may fail to find p)
$\Rightarrow w_{0}$ odd, q_{0} odd $\rightarrow r_{0}$ is even
$\square x_{0}=w_{0}+2 \rho_{0}, \quad x_{i}=\left(2 w_{i}+2 \rho_{i}\right) \bmod w_{0}$ for $i>0$
- The ρ_{i} 's are random $<\mathrm{R}$
\square Correctness:

1. $r_{i}+\rho_{i}$ distributed almost identically to ρ_{i}
$>$ Since $R>R^{\prime}$ by a super-polynomial factor
2. $2 q_{i} \bmod q_{0}$ is random in $\left[q_{0}\right]$

Amplify the distinguishing advantage

\square Given an integer $z=q p+r$, with $r<R^{\prime}$: Set $c=\left[z+m+2 \rho+\operatorname{subset}-\operatorname{sum}\left(x_{i}{ }^{\prime} s\right)\right] \bmod x_{0}$ - For random $\rho<R$, random bit m
$\square c$ is a random ciphertext wrt the x_{i} 's - $\rho>r_{i}^{\prime}$'s, so $\rho+r_{i}^{\prime}$'s distributed like ρ

- (subset-sum $\left(q_{i}\right)^{\prime}$'s mod q_{0}) random in [q_{0}]
$\square \mathrm{C} \bmod \mathrm{p} \bmod 2=r+m \bmod 2$ - A guess for $c \bmod p \bmod 2 \rightarrow$ vote for $r \bmod 2$
\square Choose many random c's, take majority - Noticeable advantage \rightarrow Reliable r mod 2

Use reliable distinguisher to learn $q_{t^{\prime}}$

\square From $z=q p+r$, can get r mod 2

- Note: $z=q+r \bmod 2($ since p is odd)
- So $(q \bmod 2)=(r \bmod 2) \oplus(z \bmod 2)$
\square Given z_{1}, z_{2}, both near multiples of p

$$
\begin{aligned}
& \text { - Get } b_{i}:=q_{i} \bmod 2 \text {, if } z_{1}<z_{2} \text { swap them } \\
& \text { - If } b_{1}=b_{2}=1 \text {, set } z_{1}:=z_{1}-z_{2}, b_{1}:=b_{1}-b_{2} \\
& \text { > At least one of the } b_{i} \text { 's must be zero now } \\
& \text { - For any } b_{i}=0 \text { set } z_{i}:=\operatorname{floor}\left(z_{i} / 2\right) \\
& >\text { new- } q_{i}=\text { old }-q_{i} / 2 \\
& \text { - Repeat until one } z_{i} \text { is zero, output the other } \\
& z=(2 s) p+r \rightarrow z / 2=s p+r / 2 \\
& \rightarrow \text { floor(z/2) }=s p+\text { floor }(r / 2)
\end{aligned}
$$

Use reliable distinguisher to learn q_{t}

$\square z_{i}=q_{i} p+r_{i}, i=1,2, z^{\prime}:=\operatorname{Binary}-\operatorname{GCD}\left(z_{1}, z_{2}\right)$

- Then $z^{\prime}=G C D^{*}\left(q_{1}, q_{2}\right) \cdot p+r^{-} \quad \begin{gathered}\text { The odd part } \\ \text { of the col }\end{gathered}$
- For random $\mathrm{q}_{1}, \mathrm{q}_{2}, \operatorname{Pr}\left[\operatorname{GCD}\left(\mathrm{q}_{1}, \mathrm{q}_{2}\right)=1\right] \sim 0.6$
\square Try (say) $z^{\prime}:=$ Binary-GCD $\left(w_{t}, w_{t-1}\right)$
- Hope that $z^{\prime}=1 \cdot p+r$
$>$ Else try again with Binary-GCD $\left(z^{\prime}, w_{t-2}\right)$, etc.
\square Run Binary-GCD $\left(w_{t}, z^{\prime}\right)$
- The b_{2} bits spell out the bits of q_{t}
\square Once you learn q_{t} then
- round $\left(w_{t} / q_{t}\right)=p+\operatorname{round}\left(r_{t} / q_{t}\right)=p$

Hardness of Approximate-GCD

\square Several lattice-based approaches for solving approximate-GCD

- Related to Simultaneous Diophantine Approximation (SDA)
- Studied in [Hawgrave-Graham01]
$>$ We considered some extensions of his attacks
\square All run out of steam when $\left|q_{i}\right|>|p|^{2}$
■ In our case $|p| \sim n^{2},\left|q_{i}\right| \sim n^{5} \gg|p|^{2}$

Relation to SDA

$\square x_{i}=q_{i} p+r_{i}\left(r_{i}<p \ll q_{i}\right), i=0,1,2, \ldots$

- $y_{i}=x_{i} / x_{0}=\left(q_{i} p+r_{i}\right) /\left(q_{0} p+r_{0}\right)$

$$
=\left(q_{i}+\left(r_{i} / p\right)\right) /\left(q_{0}+\left(r_{0} / p\right)\right)
$$

$>=\left(q_{i}+s_{i}\right) / q_{0}$, with $\mathrm{s}_{\mathrm{i}} \sim \mathrm{r}_{\mathrm{i}} / \mathrm{p} \ll 1$

- $y 1, y 2, \ldots$ is an instance of SDA
$>q_{0}$ is a denominator that approximates all $y_{1}^{\prime} s$
\square Use Lagarias'es algorithm to try and solve this SDA instance
- Find q_{0}, then $p=r o u n d\left(x_{0} / q_{0}\right)$

Lagarias'es SDA algorithm

\square Consider the rows of this matrix B :

- They span dim-(t+1) lattice
$\square<q_{0}, q_{1}, \ldots, q_{t}>\cdot B$ is short - $1^{\text {st }}$ entry: $q_{0} R<Q \cdot R$

- $i^{\text {th }}$ entry ($i>1$): $q_{0}\left(q_{i} p+r_{i}\right)-q_{i}\left(q_{0} p+r_{0}\right)=q_{0} r_{i}-q_{i} r_{0}$
\rangle Less than $Q \cdot R$ in absolute value
\rightarrow Total size less than $\mathrm{Q} \cdot \mathrm{R} \cdot \sqrt{\mathrm{t}}$
> vs. size $\sim Q \cdot P$ (or more) for the basis vectors
- Hopefully we will find it with a latticereduction algorithm (LLL or variants)

Will this algorithm succeed?

\square Is $\left\langle q_{0}, q_{1}, \ldots, q_{t}\right\rangle \cdot B$ shortest in lattice?

- Is it shorter than $\sqrt{ } t \cdot \operatorname{det}(B)^{1 / t+1}$? bound
$>\operatorname{det}(B)$ is small-ish (due to R in the corner)
- Need $\left((\mathrm{QP})^{\mathrm{t}} \mathrm{R}\right)^{1 / t+1}>\mathrm{QR}$
$\Leftrightarrow t+1>(\log Q+\log P-\log R) /(\log P-\log R)$ $\sim \log Q / \log P$
$\square \log Q=\omega\left(\log ^{2} P\right) \rightarrow$ need $t=\omega(\log P)$
\square Quality of LLL \& co. degrades with t
- Only finds vectors of size $\sim 2^{t / 2}$.shortest
$>$ or $2^{\mathrm{t} / 2} \rightarrow 2^{\mathrm{st}}$ for any constant $\varepsilon>0$
- $\mathrm{t}=\omega(\log \mathrm{P}) \rightarrow 2^{\mathrm{zt}} \cdot \mathrm{QR}>\operatorname{det}(\mathrm{B})^{1 / t+1}$
- Contemporary lattice reduction is not strong enough

Why this algorithm fails

Conclusions

- Fully Homomorphic Encryption is a very powerful tool
\square Gentry09 gives first feasibility result - Showing that it can be done "in principle"
\square We describe a "conceptually simpler" scheme, using only modular arithmetic
\square What about efficiency?
- Computation, ciphertext-expansion are polynomial, but a rather large one...
\square Improving efficiency is an open problem

Extra credit

\square The hard-core-bit theorem
\square Connection between approximate-GCD and simultaneous Diophantine approx.
\square Gentry's technique for "squashing" the decryption circuit

Thank you

