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The Goal

I want to delegate processing of my data, 
without giving away access to it.



Application: Cloud Computing

� Storing my files on the cloud

� Encrypt them to protect my information

� Later, I want to retrieve the files containing 
“cloud” within 5 words of “computing”.

� Cloud should return only these (encrypted) files, 
without knowing the key

I want to delegate processing of my 
data, without giving away access to it.



Computing on Encrypted Data

� Separating processing from access via 
encryption:

� I will encrypt my stuff before sending it to 
the cloud 

� They will apply their processing on the 
encrypted data, send me back the 
processed result

� I will decrypt the result and get my answer



Application: Private Google Search

� Private Internet search

� Encrypt my query, send to Google

� Google cannot “see” my query, since it does not 
know my key

� I still want to get the same results

� Results would be encrypted too

� Privacy combo: Encrypted query on encrypted data

I want to delegate processing of my 
data, without giving away access to it.



An Analogy: Alice’s Jewelry Store

� Alice’s workers need to assemble raw 
materials into jewelry

� But Alice is worried about theft

How can the workers process the raw 
materials without having access to them?



An Analogy: Alice’s Jewelry Store

� Alice puts materials in locked glove box

� For which only she has the key

� Workers assemble jewelry in the box

� Alice unlocks box to get “results”



The Analogy

� Encrypt: putting things inside the box
� Anyone can do this (imagine a mail-drop)

� ci � Enc(mi)

� Decrypt: Taking things out of the box
� Only Alice can do it, requires the key

� m* � Dec(c*)

� Process: Assembling the jewelry
� Anyone can do it, computing on ciphertext

� c* � Process(c1,…,cn)

� m* = Dec(c*) is “the ring”, made from 
“raw materials” mi



Public-key Encryption

� Three procedures: KeyGen, Enc, Dec

� (sk,pk) � KeyGen($)

� Generate random public/secret key-pair

� c � Encpk(m)

� Encrypt a message with the public key

� m � Decsk(c)

� Decrypt a ciphertext with the secret key

� E.g., RSA: c�me mod N, m�cd mod N

� (N,e) public key, d secret key



Homomorphic Public-key Encryption

� Another procedure: Eval (for Evaluate)

� c* � Eval(pk, f, c1,…,ct)

� No info about m1, …, mt, f(m1, …mt) is leaked

� f(m1, …mt) is the “ring” made from raw 
materials m1, …, mt inside the encryption box

Encryptions of 
inputs m1,…,mt to f 

function

Encryption of f(m1,…,mt). 
I.e., Dec(sk, c) = f(m1, …mt) 



Can we do it?

� As described so far, sure..

� (Π, c1,…,cn) = c* �Evalpk(Π, c1,…,cn)

� Decsk(c*) decrypts individual ci’s, apply Π

(the workers do nothing, Alice assembles
the jewelry by herself)

Of course, this is cheating:

� We want c* to remain small

� independent of the size of Π

� “Compact” homomorphic encryption

� We may also want Π to remain secret

Can be done with 
“generic tools”
(Yao’s garbled 

circuits)

This is the main 
challenge



Previous Schemes

� Only “somewhat homomorphic”

� Can only handle some functions f

� RSA works for MULT function (mod N)

c = c1 x … x ct =(m1 x … x mt)
e (mod N)

c � Eval(pk, f, c1,…,ct), 
Dec(sk, c) = f(m1, …, mt)

c1 = m1
e c2 = m2

e ct = mt
e

X



“Somewhat Homomorphic” Schemes

� RSA, ElGamal work for MULT mod N

� GoMi, Paillier work for XOR, ADD

� BGN05 works for quadratic formulas



Schemes with large ciphertext

� SYY99 works for shallow fan-in-2 circuits

� c* grows exponentially with the depth of f

� IsPe07 works for branching program

� c* grows with length of program

� AMGH08 for low-degree polynomials

� c* grows exponentially with degree



Connection with 2-party computation

� Can get “homomorphic encryption” from 
certain protocols for 2-party secure 
function evaluation

� E.g., Yao86

� But size of c*, complexity of decryption, 
more than complexity of the function f

� Think of Alice assembling the ring herself

� These are solving a different problem



A Recent Breakthrough 

� Genrty09: A bootstrapping technique

� Gentry also described a candidate 
“bootstrappable” scheme

� Based on ideal lattices

Scheme E can handle its 
own decryption function

Scheme E* can 
handle any function



The Current Work

� A second “bootstrappable” scheme

� Very simple: using only modular arithmetic

� Security is based on the hardness of 
finding “approximate-GCD”



As much as 
we have time

1. Homomorphic symmetric encryption

� Very simple

2. Turning it into public-key encryption

� Result is “almost bootstrappable”

3. Making it bootstrappable

� Similar to Gentry’09

4. Security

5. Gentry’s bootstrapping technique
Not today

Outline



A homomorphic symmetric encryption 

� Shared secret key: odd number p

� To encrypt a bit m:

� Choose at random small r, large q

� Output c = m + 2r + pq

� Ciphertext is close to a multiple of p

� m = LSB of distance to nearest multiple of p 

� To decrypt c:

� Output m = (c mod p) mod 2
� m =   c – p • [c/p] mod 2

=   c – [c/p] mod 2 

=   LSB(c)  XOR  LSB([c/p])

Noise much 
smaller than p

The “noise”



Homomorphic Public-Key Encryption

� Secret key is an odd p as before

� Public key is many “encryptions of 0”

� xi = qip + 2ri

� Encpk(m) = subset-sum(xi’s)+m

� Decsk(c) = (c mod p) mod 2

[      ]x0 for i=1,2,…,t

[                           ]x0



Why is this homomorphic?

� Basically because:

� If you add or multiply two near-multiples 
of p, you get another near multiple of p…



Why is this homomorphic?

� c1=q1p+2r1+m1,   c2=q2p+2r2+m2

� c1+c2 = (q1+q2)p + 2(r1+r2) + (m1+m2)

� 2(r1+r2)+(m1+m2) still much smaller than p

�c1+c2 mod p = 2(r1+r2) + (m1+m2)

� c1 x c2 = (c1q2+q1c2−q1q2)p 
+ 2(2r1r2+r1m2+m1r2) + m1m2

� 2(2r1r2+…) still much smaller than p

�c1xc2 mod p = 2(2r1r2+…) + m1m2

Distance to nearest multiple of p



Why is this homomorphic?

� c1=m1+2r1+q1p, …, ct=mt+2rt+qtp

� Let f be a multivariate poly with integer 
coefficients (sequence of +’s and x’s)

� Let c = Evalpk(f, c1, …, ct) = f(c1, …, ct)

� f(c1, …, ct) = f(m1+2r1, …, mt+2rt) + qp
= f(m1, …, mt) + 2r + qp

� Then (c mod p) mod 2 = f(m1, …, mt) mod 2

Suppose this noise is much smaller than p

That’s what we want!



How homomorphic is this?

� Can keep adding and multiplying until the 
“noise term” grows larger than p/2

� Noise doubles on addition, squares on 
multiplication

� Multiplying d ciphertexts � noise of size ~2dn

� We choose r ~ 2n, p ~ 2n   (and q ~ 2n )

� Can compute polynomials of degree n before 
the noise grows too large

2 5



Keeping it small

� The ciphertext’s bit-length doubles with 
every multiplication

� The original ciphertext already has n6 bits

� After ~log n multiplications we get ~n7 bits

� We can keep the bit-length at n6 by 
adding more “encryption of zero”

� |y1|=n
6+1, |y2|=n

6+2, …, |ym|=2n
6

� Whenever the ciphertext length grows, 
set c’ = c mod ym mod ym-1 … mod y1



Bootstrappable yet?

� Almost, but not quite:

� Decryption is m = LSB(c) / LSB([c/p])

� Computing [c/p] takes degree O(n)

� But O() is more than one  (maybe 7??)

� Integer c has ~n5 bits 

� Our scheme only supports degree ≤ n

� To get a bootstrappable scheme, use 
Gentry09 technique to “squash the 
decryption circuit”

c/p, rounded to 
nearest integer



How do we “simplify” decryption?

� Idea: Add to public key another “hint” about sk

� Of course, hint should not break secrecy of encryption

� With hint, anyone can post-process the ciphertext, 
leaving less work for DecE* to do

� This idea is used in server-aided cryptography.

Old 
decryption 
algorithm

m

csk

DecE



How do we “simplify” decryption?

Old 
decryption 
algorithm

m

csk

DecE

cf(sk, r)

Post-
Process

sk*

m

DecE*

c*

Processed 
ciphertext c*

New 
approach

The hint 
about sk
in pub key

Hint in pub key lets anyone post-process the ciphertext, 
leaving less work for DecE* to do.



Squashing the decryption circuit

� Add to public key many real numbers
� d1,d2, …, dt ∈ [0,2]   (with “sufficient precision”)

� ∃ sparse set S for which Σi∈S di = 1/p mod 2

� Enc, Eval output ψi=c x di mod 2, i=1,…,t
� Together with c itself

� New secret key is bit-vector σ1,…,σt
� σi=1 if i∈S, σi=0 otherwise

� New Dec(c) is c – [Σi σiΨi] mod 2
� Can be computed with a “low-degree circuit”
because S is sparse



A Different Way to Add Numbers

� DecE*(s,c)= LSB(c) XOR LSB([Σi σiψi])

Our problem: t is large (e.g. n6)

a1,0 a1,-1 … a1,-log t

a2,0 a2,-1 … a2,-log t

a3,0 a3,-1 … a3,-log t

a4,0 a4,-1 … a4,-log t

a5,0 a5,-1 … a5,-log t

… … … …

at,0 at,-1 … at,-log t

ai‘s in binary 
representation

ai



A Different Way to Add Numbers

a1,0 a1,-1 … a1,-log t

a2,0 a2,-1 … a2,-log t

a3,0 a3,-1 … a3,-log t

a4,0 a4,-1 … a4,-log t

a5,0 a5,-1 … a5,-log t

… … … …

at,0 at,-1 … at,-log t

Let b0 be 
the binary 
rep of 

Hamming 
weight

b0,log t … b0,1 b0,0



A Different Way to Add Numbers

a1,0 a1,-1 … a1,-log t

a2,0 a2,-1 … a2,-log t

a3,0 a3,-1 … a3,-log t

a4,0 a4,-1 … a4,-log t

a5,0 a5,-1 … a5,-log t

… … … …

at,0 at,-1 … an,-log t

Let b-1 be 
the binary 
rep of 

Hamming 
weight

b0,log t … b0,1 b0,0

b-1,log t … b-1,1 b-1,0



A Different Way to Add Numbers

a1,0 a1,-1 … a1,-log t

a2,0 a2,-1 … a2,-log t

a3,0 a3,-1 … a3,-log t

a4,0 a4,-1 … a4,-log t

a5,0 a5,-1 … a5,-log t

… … … …

at,0 at,-1 … at,-log t

Let b-log t be 
the binary 
rep of 

Hamming 
weight

b0,log t … b0,1 b0,0

b-1,log t … b-1,1 b-1,0

… … … …

b-log t,log t … b-log t,1 b-log t,0



A Different Way to Add Numbers

a1,0 a1,-1 … a1,-log t

a2,0 a2,-1 … a2,-log t

a3,0 a3,-1 … a3,-log t

a4,0 a4,-1 … a4,-log t

a5,0 a5,-1 … a5,-log t

… … … …

at,0 at,-1 … an,-log t

Only log t 
numbers with 
log t bits of 

precision.  Easy 
to handle.

b0,log t … b0,1 b0,0

b-1,log t … b-1,1 b-1,0

… … … …

b-log n,log t … b-log t,1 b-log t,0



Computing Sparse Hamming Wgt.

a1,0 a1,-1 … a1,-log n

a2,0 a2,-1 … a2,-log n

a3,0 a3,-1 … a3,-log n

a4,0 a4,-1 … a4,-log n

a5,0 a5,-1 … a5,-log n

… … … …

at,0 at,-1 … at,-log t



Computing Sparse Hamming Wgt.

a1,0 a1,-1 … a1,-log t

0 0 … 0

0 0 … 0

a4,0 a4,-1 … a4,-log t

0 0 … 0

… … … …

at,0 at,-1 … at,-log t



Computing Sparse Hamming Wgt.

� Binary representation of the Hamming 
weight of a = (a1, …, at)∈{0,1}

t

� The i’th bit of HW(a) is e2i(a) mod2

� ek is elementary symmetric poly of degree k

� Sum of all products of k bits

� We know a priori that weight ≤ |S|

� � Only need upto e2^[log |S|](a)

� � Polynomials of degree upto |S|

� Set |S| ~ n, then E* is bootstrappable.



Security

� The approximate-GCD problem:

� Input: integers w0, w1,…, wt, 

� Chosen as wi = qip + ri for a secret odd p

� p∈$[0,P], qi∈$[0,Q], ri∈$[0,R] (with R ^ P ^ Q)

� Task: find p

� Thm: If we can distinguish Enc(0)/Enc(1) 
for some p, then we can find that p

� Roughly: the LSB of ri is a “hard core bit”

� Scheme is secure if approx-GCD is hard

� Is approx-GCD really a hard problem?



Hard-core-bit theorem

A. The approximate-GCD problem:

� Input: wi = qip + ri (i=0,…,t)

� p∈$[0,P], qi∈$[0,Q], ri∈$[0,R’] (with R’ ^ P ^ Q)

� Task: find p

B. The cryptosystem

� Input: xi = qip + 2ri (i=0,…,t),  c=qp+2r+m

� p∈$[0,P], qi∈$[0,Q], ri∈$[0,R] (with R ^ P ^ Q)

� Task: distinguish m=0 from m=1

� Thm: Solution to B � solution to A

� small caveat: R’ smaller than R



Proof outline

� Input: wi = qip + ri (i=1,…,t)

� Use the wi’s to form a public key

� This is where we need R’>R

� Amplify the distinguishing advantage

� From any noticeable ε to almost 1

� Use reliable distinguisher to learn qt
� Using the binary GCD procedure

� Finally p = round(wt/qt)



Use the wi’s to form a public key

� We have wi=qip+ri, need xi=qi’p+2ri’

� Setting xi = 2wi yields wrong distribution

� Reorder wi’s so w0 is the largest one

� Check that w0 is odd, else abort

� Also hope that q0 is odd (else may fail to find p)

� w0 odd, q0 odd � r0 is even

� x0=w0+2ρ0,  xi=(2wi +2ρi) mod w0 for i>0

� The ρi’s are random < R 

� Correctness:

1. ri+ρi distributed almost identically to ρi
� Since R>R’ by a super-polynomial factor

2. 2qi mod q0 is random in [q0]



Amplify the distinguishing advantage

� Given an integer z=qp+r, with r<R’:
Set c = [z+ m+2ρ + subset-sum(xi’s)] mod x0
� For random ρ<R,  random bit m

� c is a random ciphertext wrt the xi’s
� ρ>ri’s, so ρ+ri’s distributed like ρ

� (subset-sum(qi)’s mod q0) random in [q0]

� c mod p mod 2 = r+m mod 2
� A guess for c mod p mod 2 � vote for r mod 2

� Choose many random c’s, take majority
� Noticeable advantage � Reliable r mod 2



z = (2s)p + r � z/2 = sp + r/2
� floor(z/2) = sp + floor(r/2)

Use reliable distinguisher to learn qt’

� From z=qp+r, can get r mod 2

� Note: z = q+r mod 2 (since p is odd)

� So (q mod 2) = (r mod 2) / (z mod 2)

� Given z1, z2, both near multiples of p

� Get bi := qi mod 2,  if z1<z2 swap them

� If b1=b2=1, set z1:=z1−z2, b1:=b1−b2
� At least one of the bi’s must be zero now

� For any bi=0 set zi := floor(zi/2)

� new-qi = old-qi/2

� Repeat until one zi is zero, output the other

B
in
a
ry
-G
C
D



The odd part 
of the GCD

Use reliable distinguisher to learn qt

� zi=qip+ri, i=1,2, z
’:=Binary-GCD(z1,z2)

� Then z’ = GCD*(q1,q2)·p + r
’

� For random q1,q2, Pr[GCD(q1,q2)=1] ~ 0.6

� Try (say) z’:=Binary-GCD(wt,wt-1)
� Hope that z’=1·p+r 

� Else try again with Binary-GCD(z’,wt-2), etc.

� Run Binary-GCD(wt,z
’)

� The b2 bits spell out the bits of qt

� Once you learn qt then
� round(wt/qt) = p+round(rt/qt) = p



Hardness of Approximate-GCD

� Several lattice-based approaches for 
solving approximate-GCD

� Related to Simultaneous Diophantine 
Approximation (SDA)

� Studied in [Hawgrave-Graham01]

� We considered some extensions of his attacks

� All run out of steam when |qi|>|p|
2

� In our case |p|~n2, |qi|~n
5 p |p|2



Relation to SDA

� xi = qip + ri (ri ^ p ^ qi), i = 0,1,2,…

� yi = xi/x0 = (qip + ri)/(q0p + r0) 
= (qi + (ri/p))/(q0 + (r0/p))

� = (qi+si)/q0, with si ~ ri/p ^ 1

� y1, y2, … is an instance of SDA

� q0 is a denominator that approximates all yi’s

� Use Lagarias’es algorithm to try and 
solve this SDA instance

� Find q0, then p=round(x0/q0)



Lagarias’es SDA algorithm

� Consider the rows of this matrix B:

� They span dim-(t+1) lattice

� <q0,q1,…,qt>·B is short

� 1st entry: q0R < Q·R

� ith entry (i>1): q0(qip+ri)-qi(q0p+r0)=q0ri-qir0
� Less than Q·R in absolute value

� Total size less than Q·R·ªt

� vs. size ~Q·P (or more) for the basis vectors

� Hopefully we will find it with a lattice-
reduction algorithm (LLL or variants)

R x1 x2 … xt
-x0

-x0
…
-x0

B=



Minkowski
bound

Will this algorithm succeed?

� Is <q0,q1,…,qt>·B shortest in lattice?
� Is it shorter than ªt·det(B)1/t+1 ?

� det(B) is small-ish (due to R in the corner)

� Need ((QP)tR)1/t+1 > QR

g t+1 > (log Q + log P – log R) / (log P – log R)
~ log Q/log P

� log Q = ω(log2P) � need t=ω(log P)

� Quality of LLL & co. degrades with t
� Only finds vectors of size ~ 2t/2·shortest

� or 2t/2�2εt for any constant ε>0

� t=ω(log P) � 2εt·QR > det(B)1/t+1

� Contemporary lattice reduction is not strong enough

R x1 x2…xt
-x0

-x0
…
-x0



Why this algorithm fails

t

logQ/logP

s
iz
e
 (
lo
g
 s
c
a
le
)

the solution we
are seeking 

auxiliary solutions
(Minkowski’s bound)
converges to ~ logQ+logP

What LLL can find
min(blue,purple)+εt

blue line
remains above
purple line

log Q



Conclusions

� Fully Homomorphic Encryption is a very 
powerful tool

� Gentry09 gives first feasibility result
� Showing that it can be done “in principle”

� We describe a “conceptually simpler”
scheme, using only modular arithmetic

� What about efficiency?
� Computation, ciphertext-expansion are 
polynomial, but a rather large one…

� Improving efficiency is an open problem



Extra credit

� The hard-core-bit theorem

� Connection between approximate-GCD 
and simultaneous Diophantine approx.

� Gentry’s technique for “squashing” the 
decryption circuit



Thank you


