Fully Homomorphic Encryption over the Integers

Many slides borrowed from Craig

Marten van Dijk¹, Craig Gentry², Shai Halevi², Vinod Vaikuntanathan²

1 – MIT, 2 – IBM Research

The Goal

I want to delegate processing of my data, without giving away access to it.

Computing on Encrypted Data

- Separating processing from access via encryption:
 - I will encrypt my stuff before sending it to the cloud
 - They will apply their processing on the encrypted data, send me back the processed result
 - I will decrypt the result and get my answer

The Analogy Encrypt: putting things inside the box Anyone can do this (imagine a mail-drop) \Box c_i \leftarrow Enc(m_i) Decrypt: Taking things out of the box Only Alice can do it, requires the key \blacksquare m* \leftarrow Dec(c*) Process: Assembling the jewelry Anyone can do it, computing on ciphertext $\blacksquare c^* \leftarrow Process(c_1,...,c_n)$ \square m^{*} = Dec(c^{*}) is "the ring", made from "raw materials" m

■ E.g., RSA: c←m^e mod N, m←c^d mod N
(N,e) public key, d secret key

No info about m₁, ..., m_t, f(m₁, ...m_t) is leaked
 f(m₁, ...m_t) is the "ring" made from raw materials m₁, ..., m_t inside the encryption box

Can we do it?

As described so far, sure...

- $(\Pi, c_1, ..., c_n) = c^* \leftarrow Eval_{pk}(\Pi, c_1, ..., c_n)$
- Dec_{sk}(c*) decrypts individual c_i's, apply Π

(the workers do nothing, Alice assembles the jewelry by herself)

Of course, this is cheating:

- We want c* to remain small²
 - independent of the size of Π
 - Compact" homomorphic encryption

We may also want II to remain secret

Can be done with "generic tools" (Yao's garbled circuits)

This is the main challenge

Schemes with large ciphertext SYY99 works for shallow fan-in-2 circuits c* grows exponentially with the depth of f IsPe07 works for branching program c* grows with length of program AMGH08 for low-degree polynomials c* grows exponentially with degree

Connection with 2-party computation

- Can get "homomorphic encryption" from certain protocols for 2-party secure function evaluation
 - E.g., Yao86
- But size of c*, complexity of decryption, more than complexity of the function f
 - Think of Alice assembling the ring herself
- These are solving a different problem

Outline

- 1. Homomorphic symmetric encryption
 - Very simple
- 2. Turning it into public-key encryption
 - Result is "almost bootstrappable"
- 3. Making it bootstrappable
 - Similar to Gentry'09
- 4. Security

As much as we have time

5. Gentry's bootstrapping technique Not today

Homomorphic Public-Key Encryption
Secret key is an odd p as before
Public key is many "encryptions of 0"
x_i = [q_ip + 2r_i]_{x0} for i=1,2,...,t
Enc_{pk}(m) = [subset-sum(x_i's)+m]_{x0}
Dec_{sk}(c) = (c mod p) mod 2

Why is this homomorphic?

Basically because:

If you add or multiply two near-multiples of p, you get another near multiple of p...

Why is this homomorphic?

$$\Box c_1 = q_1 p + 2r_1 + m_1, c_2 = q_2 p + 2r_2 + m_2$$

Distance to nearest multiple of p $C_1+C_2 = (q_1+q_2)p + \frac{2(r_1+r_2) + (m_1+m_2)}{2(r_1+r_2) + (m_1+m_2)}$ $2(r_1+r_2) + (m_1+m_2)$ still much smaller than p $r_1+c_2 \mod p = 2(r_1+r_2) + (m_1+m_2)$

□ $c_1 \ge c_2 = (c_1q_2+q_1c_2-q_1q_2)p$ + $\frac{2(2r_1r_2+r_1m_2+m_1r_2) + m_1m_2}{2(2r_1r_2+...)}$ ■ $2(2r_1r_2+...)$ still much smaller than p → $c_1 \ge c_1 \ge c_2 \mod p = 2(2r_1r_2+...) + m_1m_2$

Why is this homomorphic?

$\Box c_1 = m_1 + 2r_1 + q_1p, ..., c_t = m_t + 2r_t + q_tp$

Let f be a multivariate poly with integer coefficients (sequence of +'s and x's)

■ Let
$$c = Eval_{pk}(f, c_1, ..., c_t) = f(c_1, ..., c_t)$$

Suppose this noise is much smaller than p
■ $f(c_1, ..., c_t) = \frac{f(m_1 + 2r_1, ..., m_t + 2r_t)}{f(m_1, ..., m_t) + 2r} + qp$
= $f(m_1, ..., m_t) + 2r + qp$

Then (c mod p) mod $2 = f(m_1, ..., m_t) \mod 2$

That's what we want!

Keeping it small

- The ciphertext's bit-length doubles with every multiplication
 - The original ciphertext already has n⁶ bits
 - After ~log n multiplications we get ~n⁷ bits
- We can keep the bit-length at n⁶ by adding more "encryption of zero"
 - $|y_1| = n^6 + 1, |y_2| = n^6 + 2, ..., |y_m| = 2n^6$
 - Whenever the ciphertext length grows, set c' = c mod y_m mod y_{m-1} ... mod y₁

Bootstrappable yet? c/p, rounded to Almost, but not quite: nearest integer \Box Decryption is m = LSB(c) \oplus LSB([c/p]) Computing [c/p] takes degree O(n) But O() is more than one (maybe 7??) Integer c has ~n⁵ bits Our scheme only supports degree ≤ n To get a bootstrappable scheme, use Gentry09 technique to "squash the decryption circuit"

How do we "simplify" decryption?

Our problem: t is large (e.g. n⁶)

t	et b _{-log t} be he binary rep of Hamming weight	a _{1,0} a _{2,0} a _{3,0} a _{4,0} a _{5,0}	$a_{1,-1}$ $a_{2,-1}$ $a_{3,-1}$ $a_{4,-1}$ $a_{5,-1}$ $a_{t,-1}$	···· ···· ···· ····	$a_{1,-\log t}$ $a_{2,-\log t}$ $a_{3,-\log t}$ $a_{4,-\log t}$ $a_{5,-\log t}$ $a_{t,-\log t}$
D _{0,log t} b_	b _{0,1} 1,log t 	b _{0,0} b _{-1,1} b _{-log t,log}	b _{-1,0} t	 b _{-log t,1}	b _{-log t,0}

Only log t numbers with log t bits of precision. Easy to handle.			a _{1,0}	a _{1,-1}		a _{1,-log t}
			a _{2,0}	a _{2,-1}	•••	a _{2,-log t}
			a _{3,0}	a _{3,-1}	•••	a _{3,-log t}
			a _{4,0}	a _{4,-1}		a _{4,-log t}
			a _{5,0}	a _{5,-1}		a _{5,-log t}
			•••			
			a _{t,0}	a _{t,-1}		a _{n,-log t}
b _{0,log t}		b _{0,1}	b _{0,0}			
	b _{-1,log t}		b _{-1,1}	b _{-1,0}		
		•••		•••		
			b _{-log n,log t}	•••	b _{-log t,1}	b _{-log t,0}

Computing Sparse Hamming Wgt.

a _{1,0}	a _{1,-1}	 a _{1,-log n}
a _{2,0}	a _{2,-1}	 a _{2,-log n}
a _{3,0}	a _{3,-1}	 a _{3,-log n}
a _{4,0}	a _{4,-1}	 a _{4,-log n}
a _{5,0}	a _{5,-1}	 a _{5,-log n}
a _{t,0}	a _{t,-1}	 a _{t,-log t}
\bigcirc		

Computing Sparse Hamming Wgt.

Computing Sparse Hamming Wgt.

- Binary representation of the Hamming weight of **a** = (a₁, ..., a_t)∈ {0,1}^t
 - The i'th bit of HW(a) is e₂(a) mod2
 - e_k is elementary symmetric poly of degree k
 Sum of all products of k bits
- □ We know *a priori* that weight $\leq |S|$
 - \rightarrow Only need upto $e_{2^{[\log |S|]}}(a)$
 - Polynomials of degree upto |S|
- □ Set $|S| \sim n$, then E^* is bootstrappable.

Security The approximate-GCD problem: Input: integers w₀, w₁,..., w_t > Chosen as $w_i = q_i p + r_i$ for a secret odd p > $p \in {}_{\$}[0,P], q_{i} \in {}_{\$}[0,Q], r_{i} \in {}_{\$}[0,R]$ (with $R \ll P \ll Q$) Task: find p \Box Thm: If we can distinguish Enc(0)/Enc(1) for some p, then we can find that p Roughly: the LSB of r_i is a "hard core bit" → Scheme is secure if approx-GCD is hard Is approx-GCD really a hard problem?

Use the w_i's to form a public key

- \Box We have $w_i = q_i p + r_i$, need $x_i = q_i' p + 2r_i'$
 - Setting $x_i = 2w_i$ yields wrong distribution
- \square Reorder w_i 's so w_0 is the largest one
 - Check that w₀ is odd, else abort
 - Also hope that q₀ is odd (else may fail to find p)
 > w₀ odd, q₀ odd → r₀ is even
- $x_0 = w_0 + 2\rho_0$, $x_i = (2w_i + 2\rho_i) \mod w_0$ for i>0 ■ The ρ_i 's are random < R
- Correctness:
 - **1.** $r_i + \rho_i$ distributed almost identically to ρ_i
 - Since R>R' by a super-polynomial factor
 - **2.** $2q_i \mod q_0$ is random in $[q_0]$

Amplify the distinguishing advantage

- □ Given an integer z=qp+r, with r<R':
 - Set c = $[z + m + 2\rho + subset-sum(x_i's)] \mod x_0$
 - For random ρ<R, random bit m</p>
- \Box c is a random ciphertext wrt the x_i's
 - $\rho > r_i's$, so $\rho + r_i's$ distributed like ρ
 - (subset-sum(q_i)'s mod q₀) random in [q₀]
- \Box c mod p mod 2 = r+m mod 2
 - A guess for c mod p mod 2 \rightarrow vote for r mod 2
- Choose many random c's, take majority

Hardness of Approximate-GCD

- Several lattice-based approaches for solving approximate-GCD
 - Related to Simultaneous Diophantine Approximation (SDA)
 - Studied in [Hawgrave-Graham01]
 - We considered some extensions of his attacks
- □ All run out of steam when $|q_i| > |p|^2$
 - In our case $|p| \sim n^2$, $|q_i| \sim n^5 \gg |p|^2$

Why this algorithm fails

Conclusions

- Fully Homomorphic Encryption is a very powerful tool
- Gentry09 gives first feasibility result
 - Showing that it can be done "in principle"
- We describe a "conceptually simpler" scheme, using only modular arithmetic
- What about efficiency?
 - Computation, ciphertext-expansion are polynomial, but a rather large one...
- Improving efficiency is an open problem

Extra credit The hard-core-bit theorem Connection between approximate-GCD and simultaneous Diophantine approx. Gentry's technique for "squashing" the decryption circuit

Thank you