Indistinguishability
Obfuscation for all Circuits

Sanjam Garg, Craig Gentry*, Shai Halevi*,
Mariana Raykova, Amit Sahai, Brent Waters

* Supported by IARPA contract number D11PC20202

Code Obfuscation

» Make programs “unintelligible” while
maintaining their functionality

- Example from Wikipedia:

@P=split//, " .URRUU\C8R";Q@d=split//, "\nrekcah xinU /
lreP rehtona tsud";sub p{
Qp{"rsSp","usp"}=(P,P) ;pipe"rSp", "usSp"; ++Sp; ($q*=2) +
=sf=!fork;map{SP=SP[Sf"ord (Sp{S_})&6];Sp{S }=/
~"$P/ix?SP:closeS_ltkeyssplp;pip;pip;map{Sp{S_}=~/"[P
.1/&& close$ }%p;wait
untilS$?;map{/"r/&&<$ >}%p;$ =3d[Sgl;sleep

rand (2)if/\S/;print

 Why do 1t?
» How to define “unintelligible™?
» Can we achieve it?

Why Obfuscation?

» Hiding secrets In software

Plaintext

RESET 1V
320 38

316

308 e
. Q) COUNTER
el
=3

l ——
s 312

C

N

TAG
strutpatent.com

s?) h O
- 330 (““}_L_
i’ 329

CB;j B;
(for(b+l)=i=xr) (fori=h)

—~332
CTAG

310 313 = 322
334 -
305 304
302 oS o N
ROUND LOGIC KEY ROUND LOGIC
FOR T SCHEDULE S FOR
CBC-MAC) CTR
6 338 324
314 /1 33 38'
T | ~—9j
326
TEMP TAG |

277
328 | 327

- AES encryption

Ciphertext

Why Obfuscation?

» Hiding secrets In software

Plaintext

@P=split//,".URRUU\c8R";@d=split//,"\nrekca
h xinU / IreP rehtona tsuJ";sub p{
@p{"r$p","u$p"}=(P,P);pipe"rsp","usp";++$p;(
$g*=2)+=%$f=!Ifork;map{$P=$P[$f ord
($p{$_})&6];$p{$_}=/
"$P/ix?$P:close$_}keys%op}p;p;p;p;p;map{$p{
$ }=~/"[P.]/&& close$ }%p;wait
until$?;map{/"r/&&<$_>1%p;$_=%$d[$q];sleep
rand(2)ifAS/;print

Ciphertext

> AES encryption = Public-key encryption

Why Obfuscation?

» Hiding secrets In software

Vulnerable
program 1,2d0

< The Way that can be told of is not the eternal Way;

< The name that can be named is not the eternal name
4c2,3

< The Named is the mother of all things.

> The named is the mother of all things.

11a11,13

> They both may be called deep and profound.

> Deeper and more profound,

> The door of all subtleties!

Patched
program

> Distributing software patches

Why

Obfuscation?

» Hiding secrets In software

Vulnerable
program

o Distri
while

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU /
IreP rehtona tsuJ";sub p{
@p{"r3p","u$p’}=(P,P);pipe"r$p”,"uSp"”; ++9p;($q*=2)+=
$f=!fork;map{$P=$P[$f ord ($p{$_})&6];Sp{$ }=/
"$P/ix?$P:close$ }Ykeys%op}p;p;p;p;p;map{Sp{$ }=~/"[P
J/&& close$ }%op;wait
until$?;map{/"r/&&<$_>}%p;$_=%d[$q];sleep
rand(2)ifAS/;print

Patched
program

puting software patches
hiding vulnerability

Why Obfuscation?

» Hiding secrets In software

http://www.arco-iris.com/George/images/game of go.jpd

Next
move

- Uploading my expertise to the web

http://www.arco-iris.com/George/images/game_of_go.jpg
http://www.arco-iris.com/George/images/game_of_go.jpg
http://www.arco-iris.com/George/images/game_of_go.jpg

Why Obfuscation?

» Hiding secrets In software

@P=split//,".URRUU\c8R";@d=split/,"\nrekcah xinU
/ IreP rehtona tsuJ";sub p{
@p{"r$p","u$p"}=(P,P);pipe"rdp","udp",++3p;($q*=2)+
=$f=Ifork;map{$P=$P[$f ord ($p{$ })&6];$p{$ }=/
"$P/ix?$P:close$ }keys%op}p;p;p;p;p;map{$p{$ }=~/"
[P.J/&& close$ }%p;wait
until$?;map{/*r/&&<$_>}%p;$_=%$d[$q];sleep
rand(2)ifAS/;print

Next
move

- Uploading my expertise to the web
without revealing my strategies

Contemporary Obfuscation

» Used fairly widely in practice
e Mostly as an art form
- Some rules-of-thumb, sporadic tool support
- Relies on human ingenuity, security-via-obscurity

> “At best, obfuscation merely makes it time-
consuming, but not impossible, to reverse engineer
a program’”’ (from Wikipedia)
e Can it be done the Goldwasser-Micali way?

> Definitions, constructions, concrete assumptions

> Question addressed 15t by Barak et al. in 2001
[B+01]

Defining Obfuscation

» An efficient public procedure O(x*)
- Everything is known about it
- Except the random coins that it uses

e Takes as Input a program C
- E.g., encoded as a circuit

» Produce as output another program C’
> C' computes the same function as C
o C" at most polynomially larger than C
o C"is “unintelligible”
Okay, defining this is tricky

What's “Unintelligible™?

» What we want: cannot do much more
with €’ than running it on various Inputs
> At least: If C depends on some secrets that

are not readily apparent in its I/O, then C’
does not reveal these secrets

» [B+01] show that even this Is impossible:

- Thm: If PRFs exist, then there exists PRF
families F = {f.}, for which it is possible to
recover s from any circuit that computes f..

These PRFs are unobfuscatable

What's “Unintelligible™?

» Okay, some function are bad, but can we
get O() that does “as well as possible” on
every function?

» [B+01] suggested the weaker notion of
“Indistinguishability obfuscation” (10)
> Gives the “best-possible” guarantee [GRO7]

> |t turns out to suffice for many applications
(examples in [GGH+13, SW13,...])

Indistinguishability Obfuscation

e Def: If C;, C, compute the same function
(and [C1| = |C;]) then O(Cy) = O(C>)
o Indistinguishable even if you know Cy, C,

» Note: Inefficient 10 Is always possible

0 O(C) lexicographically 1St circuit computing
- the same function as C

\ 3 ’_»' Va
FE 0
S -~ - 4
4 oo
2T A
§ f
4

- Canonicalization is inefficient (unless P=NP)

|

|

|

|

|

|

|

|

/ g

[i

/ |

[g

|

|

|

\ |

\ g
\

Best-Possible Obfuscation

~ Padding

N

Some Computationally Some
circuit C Indistinguishable circuit C

C(x) C()

Many Applications of 10

 AES = public key encryption [GGH+13, SW13]

» Witness encryption: Encrypt x so only someone
with proof of Riemann Hypothesis can decrypt
GGSW13]

» Functional encryption: Noninteractive access
control [GGH+13], Dec(Key,, Enc(x))2F(x,y)

 Many more (all of them this year)...

» One notable thing IO doesn'’t give us (yet):
Homomorphic Encryption (HE)

Beyond 10

 For very few functions, we know how to
achieve stronger notions than IO

> “Virtual Black Box” (VBB)
» Point-functions / cryptographic locks

Ofa,b(x) ={b fx=a

1 otherwise
- [C97, CMR98, LPS04, W05]

- Many extensions, generalizations [DS05,
AWO07, CDO08, BC10, HMLS10, HRSV11,
BR13]

= |

Aside: Obfuscation vs. HE

E Obfuscation ~
. + i 9 -
- - Result in the clear

N
N

10/4/2013 Indistinguishability Obfuscation 17

e

Result encrypted

- OUR CONSTRUCTION

Obfuscating Arbitrary Circuits

» A two-step construction

1. Obfuscating “shallow circuits” (NC?)
This is where the meat is
Using multilinear maps
Security under a new (ad-hoc) assumption

2. Bootstrapping to get all circuits

Using homomorphic encryption with NC?
decryption

Very simple, provable, transformation

NC! Obfuscation=>P Obfuscation

+

Homomorphic _
Encryption -

Encrypted-result ¢
+ eval transcript

NCL Circuit If descrlbe_s |
=) homomorphic evaluation

that takes x,F to c, then

use@to decrypt c

i CondDec

10/4/2013 Indistinguishability Obfuscation 20

NC?! Obfuscation=>P Obfuscation

Homomorphic _
Encryption
_

Encrypted-result C
+ eval transcript

NC! Circuit
Obfuscate
only this part

/ | CondDec
Output of P obfuscator

10/4/2013 Indistinguishability Obfuscation 21

Conditional Decryption with 10

» We have 10, not “perfect” obfuscation

» But we can adapt the CondDec approach
- We use two HE secret keys

/ 10 for CondDec — 10 for All
~ Circuits

Analysis of Two-Key Technique

» 1st program has secret SK, inside (but not SK,).
» 2nd program has secret SK, inside (but not SK,).
» But programs are indistinguishable

* S0, neither program “leaks” either secret.

» Two-key trick is very handy in 10 context.

» Similar to Naor-Yung '90 technique to get
encryption with chosen ciphertext security

" NC! OBFUSCATION

Outline of Our Construction

» Describe Circuits as Branching Programs
(BPs) using Barrington’s theorem [B86]

» Randomized BPs (RBPs) a-la-Kilian [K88]

» Encode RBPs “in the exponent” using
multilinear maps [GGH13,CLT13]

o Modifications to defeat attacks

o Multiplicative bundling against "partial evaluation”
and “mixed input” attacks

- Defenses against “DDH attacks”, “rank attacks”

(Oblivious) Branching Programs

A specific way of describing a function
» Length-m BP with n-bit input Is a sequence

(jl; Al,Oi Al,l)l (jZJ AZ,O; AZ,l))) (j‘mr Am,O' Am,l)
> Ji € {1, ...,n} are indexes, 4;;,’s are matrices

e Input x = (x4, ..., X,) chooses matrices Aix;,
l
- Compute the product P, = ?ilAi,xj_
o F(x)=11ifP,=1,else F(x) =0

(Oblivious) Branching Programs

 This length-9 BP has 4-bit inputs

(Oblivious) Branching Programs

» This length-9 BP has 4-bit inputs

A3O

AS,O

A3,1

A8,O

A5,1

A8,1

(Oblivious) Branching Programs

» This length-9 BP has 4-bit inputs

, - As 9| As.0 - Ag o[Ag,0

, - As | [As. - Ag || Ao

10

e Multiply the chosen 9 matrices together
o |If product is I output 1. Otherwise output O.

Barrington’'s Theorem [B86]

» F computable by depth-d circuit =»
F computable by a BP of length 4¢
> With constant-dimension matrices
 Corollary: every function in NC! has a
polynomial-length BP
- Recall: NC! = O(log n)-depth circuits

Oblivious BP Evaluation [K88]}

Alice has x. Bob has y. They want Bob to get F(x, y)
> They start with a BP:{(ji;Ai,o;Am)}zl for F
Randomized BP Generation
> Alice chooses random matrices R4, ..., R, Set R, = R,

. _ _ m
’ RBP:{(JL'» Bio= Ri-14ioR; g Biy = Ri—14i1 R, 1)}1':1
Matrix Collection
- Alice sends matrices for her input {Bi,xj. c < |x|}
- Bob gets matrices for his input via OT

Evaluation of Randomized BP
> R;’s and their inverses cancel, Ry, R,,;;' cancel if P = I

Randomized BP gives Alice perfect privacy

Kilian’s Protocol=»BP-Obfuscation?

e RBP for E.(y) = F(x,y) with the x part fixed
- Bob gets Biyx; as In Kilian, but both B; ,,’s for y

- Evaluates randomized BP in usual way, choosing
appropriate B; o or B; 4 for the y-parts.

 Biggest problems:
- Perfect privacy Is lost once we give both B; ,'s

- Partial evaluation attacks: Adversary computes
partial product of matrices from positions i; to i,,
makes comparisons.

- Mixed Input attacks: Adversary computes matrix
product that does not respect the BP structure.

Multilinear Maps to Hide Matrices

» Recall cryptographic d-multilinear map:

- Groups Gy, ..., G4 of order p, generators g4, ..., 94
- Computable maps e;;:G; X G; > G;;; fori+j <d

o Multi-linearity: eij(9f 97) = gf; forall a, b
» Cryptographic hardness:
- DL analog: hard to recover a from g;*

> Multilinear-DDH: Given g.* € G, for d + 1 random a;’s,
hard to distinguish g;*""“4** from random in G4

> Eftc.
o [GGH13, CLT13] don't exactly give this

- But it's close enough for our purposes

Multilinear Maps to Hide Matrices

« Encode the B; ;s in the exponent, g

o Matrix I1s encoded element-wise
» Can use the maps ¢;;’s to multiply them

o

Bip
1

_ M N 5 (oM NY _ _MN

- Given g}, gY, compute &;;(gl", g}') = g4’
— Bi,bi P _ HiBi'bi
“rom {91 }i=1..m’ can compute gh, =g..

nen we can check if P =1

 Are the B; ,’s really hidden?

“Partial Evaluation” Attacks

» Evaluate the program on two inputs y, y’,
but only use matrices between steps

. i ;i
l1,1ly, P = Hi2=i1 Bi'yji , P = Hi2=i1 Bi'y’ji
> Check if P = P’

» Roughly, you learn if in the computations

of the circuits for F(y), F(y'), you have
the same value on some internal wire

"Mixed Input” Attack

* Inconsistent matrix selection:
> Product includes B; o and B;_ ,, but these
two steps depend on the same input bit (i.e.,
Ji, =Ji,)
» Roughly, you learn what happens when
fixing some internal wire in the circuit of

F(y)

> Fixing the wire value to O, or to 1, or copying
value from another wire, ...

"Multiplicative Bundling”

» Obfuscator uses two randomized BPs
> “Main BP” computing E.(y) = F(x,y)
> “Dummy BP’” computing c(y) =1
Same length and j;-assignments as the BP for E,
All the A; ,’s are the identity
Independent randomizer matrices R;
» For every step i choose random scalars
o, i1, o, & < Zy, under the
constraint:

> For every input bit position j and value
b € {01} Ilgij=jy ®ip = Mgiji=py @i

"Multiplicative Bundling”

o ODbfuscator outputs
{Blb _alb Rl 1Ale 1}

r—1
{Bi,b lb Rl 1IR ib

» To evaluate F(y), compute the products (in the
exponent) P = Hﬁ13i,y,-i and P’ = ?i1B'i,yji
e If F(y)=1thenP =P =a -1
- For some constant a (the same for P, P')

“Partial evaluation” & “mixed input” attacks yield
matrices that differ by a multiplicative constant

o Rather than identical matrices

DDH Attacks

» |dentifying matrices (in the exponent) that
differ by a multiplicative constant is DDH

» But we can solve DDH using MMAPs:

a b al br
> Given (gl Ji) (g‘ Ji) (with 2i < d),

C d c/ dr
9gdi Y i Yi

check e;; (gla glb’) = € (gia’rglb) etc.

» Not out of the woods yet...

More Attacks: Determinant & Rank

» Use MMAPS to compute determinant
- E.g., given g4 = (g{;‘ g§

g1 91

e11(9% 9%)/ers(9?, 95) = g5="Y

e For matrices of dimension < d, can check
If they are singular

> Use projections to compute rank

o Not sure how to use for actual attack,
but it Is something to look for

) compute

Fixing DDH, Rank Attacks

» One option (also used in [BR13Db]) Is to
switch to “asymmetric maps”

> Just like XSDH for bilinear maps, DDH can
potentially be hard in the different groups,
even though you have pairing

o A little awkward to define in the multilinear
setting, so will not do it here

Fixing DDH, Rank Attacks

e Or embed In higher-dimension matrices

$ *
© Set Di,b — . $
a; pAip

> Then B;, = R;_1D; ,R;"
» Matrix rank > d, too high to compute

» $’s are independent between all the
matrices D; o, D; 1, D; o, Dj 1

- Matrices In attacks no longer differ just by a
multiplicative constant factor

How To Evaluate?

» We have P =12, Biy, = RoDRy',

and similarly P’ = R,D'R;;*
- D' diagonal, and if E.(y) = 1then sois D

- But top entries on the diagonal are random,
different between D, D’

» Add pairs of “bookend” vectors
cu=sRyLv=R,t, u =sR, ", v =Rt
> s,t,8',t' have O’s to eliminate the $’s in D, D’

- Compute r = uPv =sDt,r' =u'P'v' =s'D't
check that r = r’

Summary of BP-Obfuscation

» “Main BP” for E.(y), “dummy” for c(y) = 1
» Multiplicative bundling with a; 5, a;
 Embed «; ,4;,’s in higher-degree D; ,’s

» Multiply by randomizers B;,, = R;_1D; ,R; *
» Add “bookend” vectors u = sR; !, v = R,,t
» Encode everything with (m + 2)-MMAPs

» To evaluate: compare products of “main”,
“dummy”, output 1 if they match.

Is This Indistinguishable?

e It's plausible...
» Don’t know to distinguish O(F,), O(Fy,),
except by finding y s.t. F,.1(y) # F,»(y)

» We can prove that some “generic attacks”
do not work

» But no simple hardness assumption that
we can reduce to

> This Is important future work

Open Problems

 Better underlying hardness assumptions

» Faster constructions
- Complexity of our construction is horrendous

 Better notions
> 10 1s okay for some things, not others

- Certainly does not capture our intuition of
what an obfuscator is

Doesn’t even capture the intuition of what the
current construction achieves

» Applications
> The sky is the limit...

-
0,
-
@)

=
0
(5]
>

O

Thank You

