
Indistinguishability

Obfuscation for all Circuits

Sanjam Garg, Craig Gentry*, Shai Halevi*,

Mariana Raykova, Amit Sahai, Brent Waters

Faces in Modern Cryptography, Oct-2013

A Celebration in Honor of Goldwasser and Micali’s Turing Award

* Supported by IARPA contract number D11PC20202

Code Obfuscation

 Make programs “unintelligible” while
maintaining their functionality
◦ Example from Wikipedia:

 Why do it?

 How to define “unintelligible”?

 Can we achieve it?

10/4/2013 Indistinguishability Obfuscation 2

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU /

lreP rehtona tsuJ";sub p{

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+

=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P

.]/&& close$_}%p;wait

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep

rand(2)if/\S/;print

Why Obfuscation?

 Hiding secrets in software

◦ AES encryption

10/4/2013 Indistinguishability Obfuscation 3

strutpatent.com

Plaintext

Ciphertext

Why Obfuscation?

 Hiding secrets in software

◦ AES encryption  Public-key encryption

10/4/2013 Indistinguishability Obfuscation 4

Plaintext

Ciphertext

@P=split//,".URRUU\c8R";@d=split//,"\nrekca

h xinU / lreP rehtona tsuJ";sub p{

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;(

$q*=2)+=$f=!fork;map{$P=$P[$f^ord

($p{$_})&6];$p{$_}=/

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{

$_}=~/^[P.]/&& close$_}%p;wait

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep

rand(2)if/\S/;print

Why Obfuscation?

 Hiding secrets in software

◦ Distributing software patches

10/4/2013 Indistinguishability Obfuscation 5

Vulnerable

program

Patched

program

1,2d0

< The Way that can be told of is not the eternal Way;

< The name that can be named is not the eternal name

4c2,3

< The Named is the mother of all things.

> The named is the mother of all things.

11a11,13

> They both may be called deep and profound.

> Deeper and more profound,

> The door of all subtleties!

Why Obfuscation?

 Hiding secrets in software

◦ Distributing software patches

while hiding vulnerability
10/4/2013 Indistinguishability Obfuscation 6

Vulnerable

program

Patched

program

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU /

lreP rehtona tsuJ";sub p{

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+=

$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P

.]/&& close$_}%p;wait

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep

rand(2)if/\S/;print

Why Obfuscation?

 Hiding secrets in software

◦ Uploading my expertise to the web

10/4/2013 Indistinguishability Obfuscation 7

Next

move

http://www.arco-iris.com/George/images/game_of_go.jpg

Game of Go

http://www.arco-iris.com/George/images/game_of_go.jpg
http://www.arco-iris.com/George/images/game_of_go.jpg
http://www.arco-iris.com/George/images/game_of_go.jpg

Why Obfuscation?

 Hiding secrets in software

◦ Uploading my expertise to the web

without revealing my strategies
10/4/2013 Indistinguishability Obfuscation 8

Next

move

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU

/ lreP rehtona tsuJ";sub p{

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+

=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^

[P.]/&& close$_}%p;wait

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep

rand(2)if/\S/;print

Game of Go

Contemporary Obfuscation

 Used fairly widely in practice

 Mostly as an art form
◦ Some rules-of-thumb, sporadic tool support

◦ Relies on human ingenuity, security-via-obscurity

◦ “At best, obfuscation merely makes it time-
consuming, but not impossible, to reverse engineer
a program” (from Wikipedia)

 Can it be done the Goldwasser-Micali way?
◦ Definitions, constructions, concrete assumptions

◦ Question addressed 1st by Barak et al. in 2001
[B+01]

10/4/2013 Indistinguishability Obfuscation 9

Defining Obfuscation

 An efficient public procedure O(*)

◦ Everything is known about it

◦ Except the random coins that it uses

 Takes as input a program 𝐶

◦ E.g., encoded as a circuit

 Produce as output another program 𝐶′

◦ 𝐶′ computes the same function as 𝐶

◦ 𝐶′ at most polynomially larger than 𝐶

◦ 𝐶′ is “unintelligible”

 Okay, defining this is tricky
10/4/2013 Indistinguishability Obfuscation 10

What’s “Unintelligible”?

 What we want: cannot do much more

with 𝐶’ than running it on various inputs

◦ At least: If 𝐶 depends on some secrets that

are not readily apparent in its I/O, then 𝐶’
does not reveal these secrets

 [B+01] show that even this is impossible:

◦ Thm: If PRFs exist, then there exists PRF

families 𝐹 = 𝑓𝑠 , for which it is possible to

recover 𝑠 from any circuit that computes 𝑓𝑠.

 These PRFs are unobfuscatable

10/4/2013 Indistinguishability Obfuscation 11

What’s “Unintelligible”?

 Okay, some function are bad, but can we

get O() that does “as well as possible” on

every function?

 [B+01] suggested the weaker notion of

“indistinguishability obfuscation” (iO)

◦ Gives the “best-possible” guarantee [GR07]

◦ It turns out to suffice for many applications

(examples in [GGH+13, SW13,…])

10/4/2013 Indistinguishability Obfuscation 12

Indistinguishability Obfuscation

 Def: If 𝐶1, 𝐶2 compute the same function
(and |𝐶1| = |𝐶2|) then 𝑂 𝐶1 ≈ 𝑂 𝐶2
◦ Indistinguishable even if you know 𝐶1, 𝐶2

 Note: Inefficient iO is always possible
◦ 𝑂(𝐶) = lexicographically 1st circuit computing

 the same function as 𝐶

 (canonical form)

◦ Canonicalization is inefficient (unless P=NP)

 10/4/2013 Indistinguishability Obfuscation 13

Best-Possible Obfuscation

Some

circuit C

Best Obfuscation

Indist. Obfuscation

x

C(x)

Some

circuit C

Padding

Indist. Obfuscation

x

C(x)

≈
Computationally

Indistinguishable

Many Applications of iO

 AES  public key encryption [GGH+13, SW13]

 Witness encryption: Encrypt 𝑥 so only someone
with proof of Riemann Hypothesis can decrypt
[GGSW13]

 Functional encryption: Noninteractive access
control [GGH+13], Dec(Key𝑦, Enc(𝑥))F(𝑥, 𝑦)

 Many more (all of them this year)…

 One notable thing iO doesn’t give us (yet):
Homomorphic Encryption (HE)

Beyond iO

 For very few functions, we know how to

achieve stronger notions than iO

◦ “Virtual Black Box” (VBB)

 Point-functions / cryptographic locks

◦ 𝑓𝑎,𝑏 𝑥 = {
𝑏 𝑖𝑓 𝑥 = 𝑎

⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

◦ [C97, CMR98, LPS04, W05]

◦ Many extensions, generalizations [DS05,

AW07, CD08, BC10, HMLS10, HRSV11,

BR13]

10/4/2013 Indistinguishability Obfuscation 16

Aside: Obfuscation vs. HE

10/4/2013 Indistinguishability Obfuscation 17

F Obfuscation F

F Encryption F

x

+  F(x)

Result in the clear

x

+  F(x)

x or Result encrypted

OUR CONSTRUCTION

10/4/2013 Indistinguishability Obfuscation 18

Obfuscating Arbitrary Circuits

 A two-step construction

1. Obfuscating “shallow circuits” (NC1)

 This is where the meat is

 Using multilinear maps

 Security under a new (ad-hoc) assumption

2. Bootstrapping to get all circuits

 Using homomorphic encryption with NC1

decryption

 Very simple, provable, transformation

10/4/2013 Indistinguishability Obfuscation 19

NC1 ObfuscationP Obfuscation

10/4/2013 Indistinguishability Obfuscation 20

F
Homomorphic

Encryption
F

x

+ F(x)

Encrypted-result 𝑐

+ eval transcript 𝜋

NC1 Circuit
If 𝜋 describes

homomorphic evaluation

that takes x,F to 𝑐, then

use sk to decrypt 𝑐

F(x)

CondDec

NC1 ObfuscationP Obfuscation

10/4/2013 Indistinguishability Obfuscation 21

x

+ F(x)

Encrypted-result 𝐶

+ eval transcript 𝜋

@P=split//,".URRUU\c8

R";@d=split//,"\nrekcah

xinU / lreP rehtona

tsuJ";sub p{ @p{"r$p“…

F(x)

Obfuscate

only this part

NC1 Circuit

Output of P obfuscator

F
Homomorphic

Encryption
F

CondDec

Conditional Decryption with iO

 We have iO, not “perfect” obfuscation

 But we can adapt the CondDec approach

◦ We use two HE secret keys

iO for CondDec → iO for All

Circuits

CondDecF,SK0(·, …, ·)

Indist. Obfuscation

π, x, and two ciphertexts

c0 = EncPK0(F(x)) and

c1 = EncPK1(F(x))

F(x) if π verifies

≈ CondDecF,SK1(·, …, ·)

Indist. Obfuscation

π, xi’s, and two ciphertexts

c0 = EncPK0(F(x)) and

c1 = EncPK1(F(x))

F(x) if π verifies

Analysis of Two-Key Technique

 1st program has secret SK0 inside (but not SK1).

 2nd program has secret SK1 inside (but not SK0).

 But programs are indistinguishable

 So, neither program “leaks” either secret.

 Two-key trick is very handy in iO context.

 Similar to Naor-Yung ’90 technique to get

encryption with chosen ciphertext security

NC1 OBFUSCATION

10/4/2013 Indistinguishability Obfuscation 25

Outline of Our Construction

 Describe Circuits as Branching Programs
(BPs) using Barrington’s theorem [B86]

 Randomized BPs (RBPs) a-la-Kilian [K88]

 Encode RBPs “in the exponent” using
multilinear maps [GGH13,CLT13]

 Modifications to defeat attacks
◦ Multiplicative bundling against ”partial evaluation”

and “mixed input” attacks

◦ Defenses against “DDH attacks”, “rank attacks”

10/4/2013 Indistinguishability Obfuscation 26

(Oblivious) Branching Programs

 A specific way of describing a function

 Length-𝑚 BP with 𝑛-bit input is a sequence

𝑗1, 𝐴1,0, 𝐴1,1 , 𝑗2, 𝐴2,0, 𝐴2,1 , … , (𝑗𝑚, 𝐴𝑚,0, 𝐴𝑚,1)

◦ 𝑗𝑖 ∈ {1, … , 𝑛} are indexes, 𝐴𝑖,𝑏’s are matrices

 Input 𝑥 = (𝑥1, … , 𝑥𝑛) chooses matrices 𝐴𝑖,𝑥𝑗𝑖

◦ Compute the product 𝑃𝑥 = 𝐴𝑖,𝑥𝑗𝑖
𝑚
𝑖=1

◦ 𝐹 𝑥 = 1 if 𝑃𝑥 = 𝐼, else 𝐹 𝑥 = 0

10/4/2013 Indistinguishability Obfuscation 27

(Oblivious) Branching Programs

 This length-9 BP has 4-bit inputs

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 0

(Oblivious) Branching Programs

 This length-9 BP has 4-bit inputs

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 0 1

(Oblivious) Branching Programs

 This length-9 BP has 4-bit inputs

 Multiply the chosen 9 matrices together

◦ If product is 𝐼 output 1. Otherwise output 0.

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1

 0 1 1 0

Barrington’s Theorem [B86]

 𝐹 computable by depth-𝑑 circuit 

𝐹 computable by a BP of length 4𝑑

◦ With constant-dimension matrices

 Corollary: every function in NC1 has a

polynomial-length BP

◦ Recall: NC1 = O(log n)-depth circuits

Oblivious BP Evaluation [K88]

 Alice has 𝑥. Bob has 𝑦. They want Bob to get 𝐹 𝑥, 𝑦

◦ They start with a BP= 𝑗𝑖 , 𝐴𝑖,0, 𝐴𝑖,1 𝑖=1

𝑚
 for 𝐹

 Randomized BP Generation
◦ Alice chooses random matrices 𝑅1, … , 𝑅𝑚, set 𝑅0 = 𝑅𝑚

◦ RBP= 𝑗𝑖 , 𝐵𝑖,0= 𝑅𝑖−1𝐴𝑖,0𝑅𝑖
−1, 𝐵𝑖,1 = 𝑅𝑖−1𝐴𝑖,1𝑅𝑖

−1
𝑖=1

𝑚

 Matrix Collection
◦ Alice sends matrices for her input {𝐵𝑖,𝑥𝑗𝑖

∶ 𝑖 ≤ |𝑥|}

◦ Bob gets matrices for his input via OT

 Evaluation of Randomized BP
◦ 𝑅𝑖 ’s and their inverses cancel, 𝑅0, 𝑅𝑚

−1 cancel if 𝑃 = 𝐼

 Randomized BP gives Alice perfect privacy

Kilian’s ProtocolBP-Obfuscation?

 RBP for 𝐹𝑥 𝑦 = 𝐹(𝑥, 𝑦) with the 𝑥 part fixed
◦ Bob gets 𝐵𝑖,𝑥𝑗𝑖

 as in Kilian, but both 𝐵𝑖,𝑏’s for 𝑦

◦ Evaluates randomized BP in usual way, choosing
appropriate 𝐵𝑖,0 or 𝐵𝑖,1 for the 𝑦-parts.

 Biggest problems:
◦ Perfect privacy is lost once we give both 𝐵𝑖,𝑏’s

◦ Partial evaluation attacks: Adversary computes
partial product of matrices from positions 𝑖1 to 𝑖2,
makes comparisons.

◦ Mixed Input attacks: Adversary computes matrix
product that does not respect the BP structure.

Multilinear Maps to Hide Matrices

 Recall cryptographic 𝑑-multilinear map:
◦ Groups 𝐺1, … , 𝐺𝑑 of order 𝑝, generators 𝑔1, … , 𝑔𝑑

◦ Computable maps 𝑒𝑖𝑗: 𝐺𝑖 × 𝐺𝑗 → 𝐺𝑖+𝑗 for 𝑖 + 𝑗 ≤ 𝑑

◦ Multi-linearity: 𝑒𝑖𝑗 𝑔𝑖
𝑎 , 𝑔𝑗

𝑏 = 𝑔𝑖+𝑗
𝑎𝑏 for all 𝑎, 𝑏

 Cryptographic hardness:

◦ DL analog: hard to recover 𝑎 from 𝑔𝑖
𝑎

◦ Multilinear-DDH: Given 𝑔1
𝑎𝑖 ∈ 𝐺1 for 𝑑 + 1 random 𝑎𝑖 ’s,

hard to distinguish 𝑔𝑑
𝑎1⋅…⋅𝑎𝑑+1 from random in 𝐺𝑑

◦ Etc.

 [GGH13, CLT13] don’t exactly give this

◦ But it’s close enough for our purposes

Multilinear Maps to Hide Matrices

 Encode the 𝐵𝑖,𝑏’s in the exponent, 𝑔1
𝐵𝑖,𝑏

◦ Matrix is encoded element-wise

 Can use the maps 𝑒𝑖𝑗 ’s to multiply them

◦ Given 𝑔𝑖
𝑀, 𝑔𝑗

𝑁, compute 𝑒 𝑖𝑗 𝑔𝑖
𝑀, 𝑔𝑗

𝑁 = 𝑔𝑖+𝑗
𝑀𝑁

◦ From 𝑔1
𝐵𝑖,𝑏𝑖

𝑖=1..𝑚
, can compute 𝑔𝑚

𝑃 = 𝑔𝑚
 𝐵𝑖,𝑏𝑖𝑖

 Then we can check if 𝑃 = 𝐼

 Are the 𝐵𝑖,𝑏’s really hidden?

10/4/2013 Indistinguishability Obfuscation 35

“Partial Evaluation” Attacks

 Evaluate the program on two inputs 𝑦, 𝑦′,
but only use matrices between steps

𝑖1, 𝑖2, 𝑃 = 𝐵𝑖,𝑦𝑗𝑖
𝑖2
𝑖=𝑖1

, 𝑃′ = 𝐵𝑖,𝑦′
𝑗𝑖

𝑖2
𝑖=𝑖1

◦ Check if 𝑃 = 𝑃′

 Roughly, you learn if in the computations

of the circuits for 𝐹 𝑦 , 𝐹 𝑦′ , you have

the same value on some internal wire

10/4/2013 Indistinguishability Obfuscation 36

“Mixed Input” Attack

 Inconsistent matrix selection:

◦ Product includes 𝐵𝑖1,0 and 𝐵𝑖2,1, but these

two steps depend on the same input bit (i.e.,

𝑗𝑖1 = 𝑗𝑖2)

 Roughly, you learn what happens when

fixing some internal wire in the circuit of

𝐹 𝑦

◦ Fixing the wire value to 0, or to 1, or copying

value from another wire, …

10/4/2013 Indistinguishability Obfuscation 37

“Multiplicative Bundling”

 Obfuscator uses two randomized BPs
◦ “Main BP ” computing 𝐹𝑥 𝑦 = 𝐹(𝑥, 𝑦)

◦ “Dummy BP′ ” computing c 𝑦 = 1
 Same length and 𝑗𝑖-assignments as the BP for 𝐹𝑥

 All the 𝐴𝑖,𝑏
′ ’s are the identity

 Independent randomizer matrices 𝑅𝑖
′

 For every step 𝑖 choose random scalars
𝛼𝑖,0, 𝛼𝑖,1, 𝛼𝑖,0

′ , 𝛼𝑖,1
′ ← 𝑍𝑝 under the

constraint:
◦ For every input bit position 𝑗 and value
𝑏 ∈ {0,1} 𝛼𝑖,𝑏 = 𝛼𝑖,𝑏

′
{𝑖:𝑗𝑖=𝑗}{𝑖:𝑗𝑖=𝑗}

10/4/2013 Indistinguishability Obfuscation 38

“Multiplicative Bundling”

 Obfuscator outputs
𝐵𝑖,𝑏 = 𝛼𝑖,𝑏 ⋅ 𝑅𝑖−1𝐴𝑖,𝑏𝑅𝑖

−1
𝑖,𝑏

𝐵𝑖,𝑏
′ = 𝛼𝑖,𝑏

′ ⋅ 𝑅𝑖−1
′ 𝐼 𝑅𝑖

′−1

𝑖,𝑏

 To evaluate 𝐹 𝑦 , compute the products (in the

exponent) 𝑃 = 𝐵𝑖,𝑦𝑗𝑖
𝑚
𝑖=1 and 𝑃′ = 𝐵′𝑖,𝑦𝑗𝑖

𝑚
𝑖=1

 If 𝐹 𝑦 = 1 then 𝑃 = 𝑃′ = 𝛼 ⋅ 𝐼
◦ For some constant 𝛼 (the same for 𝑃, 𝑃′)

 “Partial evaluation” & “mixed input” attacks yield
matrices that differ by a multiplicative constant

◦ Rather than identical matrices

10/4/2013 Indistinguishability Obfuscation 39

DDH Attacks

 Identifying matrices (in the exponent) that

differ by a multiplicative constant is DDH

 But we can solve DDH using MMAPs:

◦ Given
𝑔𝑖
𝑎 𝑔𝑖

𝑏

𝑔𝑖
𝑐 𝑔𝑖

𝑑
,

𝑔𝑖
𝑎′ 𝑔𝑖

𝑏′

𝑔𝑖
𝑐′ 𝑔𝑖

𝑑′
 (with 2𝑖 ≤ 𝑑),

check 𝑒𝑖,𝑖 𝑔𝑖
𝑎, 𝑔𝑖

𝑏′ = 𝑒𝑖,𝑖 𝑔𝑖
𝑎′ , 𝑔𝑖

𝑏 etc.

 Not out of the woods yet…

10/4/2013 Indistinguishability Obfuscation 40

More Attacks: Determinant & Rank

 Use MMAPs to compute determinant

◦ E.g., given 𝑔𝐴 =
𝑔1
𝑎 𝑔1

𝑏

𝑔1
𝑐 𝑔1

𝑑
 compute

𝑒1,1 𝑔1
𝑎, 𝑔1

𝑑 𝑒1,1 𝑔1
𝑏 , 𝑔1

𝑐 = 𝑔2
det (𝐴)

 For matrices of dimension ≤ 𝑑, can check

if they are singular

◦ Use projections to compute rank

 Not sure how to use for actual attack,

but it is something to look for

10/4/2013 Indistinguishability Obfuscation 41

Fixing DDH, Rank Attacks

 One option (also used in [BR13b]) is to

switch to “asymmetric maps”

◦ Just like XSDH for bilinear maps, DDH can

potentially be hard in the different groups,

even though you have pairing

◦ A little awkward to define in the multilinear

setting, so will not do it here

10/4/2013 Indistinguishability Obfuscation 42

Fixing DDH, Rank Attacks

 Or embed in higher-dimension matrices

◦ Set 𝐷𝑖,𝑏 =
$

$
𝛼𝑖,𝑏𝐴𝑖,𝑏

◦ Then 𝐵𝑖,𝑏 = 𝑅𝑖−1𝐷𝑖,𝑏𝑅𝑖
−1

 Matrix rank > 𝑑, too high to compute

 $’s are independent between all the

matrices 𝐷𝑖,0, 𝐷𝑖,1, 𝐷𝑖,0
′ , 𝐷𝑖,1

′

◦ Matrices in attacks no longer differ just by a

multiplicative constant factor

10/4/2013 Indistinguishability Obfuscation 43

How To Evaluate?

 We have 𝑃 = 𝐵𝑖,𝑦𝑗𝑖
𝑚
𝑖=1 = 𝑅0𝐷𝑅𝑚

−1,

and similarly 𝑃′ = 𝑅0
′𝐷′𝑅𝑚

′−1

◦ 𝐷′ diagonal, and if 𝐹𝑥 𝑦 = 1 then so is 𝐷

◦ But top entries on the diagonal are random,

different between 𝐷, 𝐷′

 Add pairs of “bookend” vectors

◦ 𝒖 = 𝒔𝑅0
−1, 𝒗 = 𝑅𝑚𝒕, 𝒖

′ = 𝒔′R0
′ −1, 𝒗′ = 𝑅𝑚

′ 𝒕′

◦ 𝒔, 𝐭, 𝐬′, 𝐭′ have 0’s to eliminate the $’s in 𝐷,𝐷′

◦ Compute 𝑟 = 𝒖𝑃𝒗 = 𝒔𝐷𝒕, 𝑟′ = 𝒖′𝑃′𝒗′ = 𝒔′𝐷′𝒕′,
check that 𝑟 = 𝑟′

10/4/2013 Indistinguishability Obfuscation 44

Summary of BP-Obfuscation

 “Main BP” for 𝐹𝑥(𝑦), “dummy” for c 𝑦 = 1

 Multiplicative bundling with 𝛼𝑖,𝑏 , 𝛼𝑖,𝑏
′

 Embed 𝛼𝑖,𝑏𝐴𝑖,𝑏’s in higher-degree 𝐷𝑖,𝑏’s

 Multiply by randomizers 𝐵𝑖,𝑏 = 𝑅𝑖−1𝐷𝑖,𝑏𝑅𝑖
−1

 Add “bookend” vectors 𝒖 = 𝒔𝑅0
−1, 𝒗 = 𝑅𝑚𝒕

 Encode everything with (𝑚 + 2)-MMAPs

 To evaluate: compare products of “main”,

“dummy”, output 1 if they match.

10/4/2013 Indistinguishability Obfuscation 45

Is This Indistinguishable?

 It’s plausible…

 Don’t know to distinguish 𝑂 𝐹𝑥1 , 𝑂(𝐹𝑥2),
except by finding 𝑦 s.t. 𝐹𝑥1 𝑦 ≠ 𝐹𝑥2(𝑦)

 We can prove that some “generic attacks”

do not work

 But no simple hardness assumption that

we can reduce to

◦ This is important future work

10/4/2013 Indistinguishability Obfuscation 46

Open Problems

 Better underlying hardness assumptions

 Faster constructions
◦ Complexity of our construction is horrendous

 Better notions
◦ iO is okay for some things, not others

◦ Certainly does not capture our intuition of
what an obfuscator is
 Doesn’t even capture the intuition of what the

current construction achieves

 Applications
◦ The sky is the limit…

10/4/2013 Indistinguishability Obfuscation 47

Thank You

Questions?

