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Code Obfuscation 

 Make programs “unintelligible” while 
maintaining their functionality 
◦ Example from Wikipedia: 

 
 

 

 

 Why do it? 

 How to define “unintelligible”? 

 Can we achieve it? 
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@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU / 

lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+

=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P

.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 



Why Obfuscation? 

 Hiding secrets in software 

 

 

 

 

 

 

 

◦ AES encryption 
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strutpatent.com 

Plaintext 

Ciphertext 



Why Obfuscation? 

 Hiding secrets in software 

 

 

 

 

 

 

 

◦ AES encryption  Public-key encryption 
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Plaintext 

Ciphertext 

@P=split//,".URRUU\c8R";@d=split//,"\nrekca

h xinU / lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;(

$q*=2)+=$f=!fork;map{$P=$P[$f^ord 

($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{

$_}=~/^[P.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 



Why Obfuscation? 

 Hiding secrets in software 
 

 

 

 

 

 

 

◦ Distributing software patches 
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Vulnerable 

program 

Patched 

program 

1,2d0  

< The Way that can be told of is not the eternal Way;  

< The name that can be named is not the eternal name 

4c2,3  

< The Named is the mother of all things.  

---  

> The named is the mother of all things.  

11a11,13  

> They both may be called deep and profound.  

> Deeper and more profound,  

> The door of all subtleties! 



Why Obfuscation? 

 Hiding secrets in software 
 

 

 

 

 

 

 

◦ Distributing software patches 

while hiding vulnerability 
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Vulnerable 

program 

Patched 

program 

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU / 

lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+=

$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^[P

.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 



Why Obfuscation? 

 Hiding secrets in software 
 

 

 

 

 

 

 

◦ Uploading my expertise to the web 
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Next 

move 

http://www.arco-iris.com/George/images/game_of_go.jpg 

Game of Go 

http://www.arco-iris.com/George/images/game_of_go.jpg
http://www.arco-iris.com/George/images/game_of_go.jpg
http://www.arco-iris.com/George/images/game_of_go.jpg


Why Obfuscation? 

 Hiding secrets in software 
 

 

 

 

 

 

 

◦ Uploading my expertise to the web 

without revealing my strategies 
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Next 

move 

@P=split//,".URRUU\c8R";@d=split//,"\nrekcah xinU 

/ lreP rehtona tsuJ";sub p{ 

@p{"r$p","u$p"}=(P,P);pipe"r$p","u$p";++$p;($q*=2)+

=$f=!fork;map{$P=$P[$f^ord ($p{$_})&6];$p{$_}=/ 

^$P/ix?$P:close$_}keys%p}p;p;p;p;p;map{$p{$_}=~/^

[P.]/&& close$_}%p;wait 

until$?;map{/^r/&&<$_>}%p;$_=$d[$q];sleep 

rand(2)if/\S/;print 

Game of Go 



Contemporary Obfuscation 

 Used fairly widely in practice 

 Mostly as an art form 
◦ Some rules-of-thumb, sporadic tool support 

◦ Relies on human ingenuity, security-via-obscurity 

◦ “At best, obfuscation merely makes it time-
consuming, but not impossible, to reverse engineer 
a program” (from Wikipedia) 

 Can it be done the Goldwasser-Micali way? 
◦ Definitions, constructions, concrete assumptions 

◦ Question addressed 1st by Barak et al. in 2001 
[B+01] 
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Defining Obfuscation 

 An efficient public procedure O(*) 

◦ Everything is known about it 

◦ Except the random coins that it uses 

 Takes as input a program 𝐶 

◦ E.g., encoded as a circuit 

 Produce as output another program 𝐶′ 

◦ 𝐶′ computes the same function as 𝐶  

◦ 𝐶′ at most polynomially larger than 𝐶 

◦ 𝐶′ is “unintelligible” 

 Okay, defining this is tricky 
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What’s “Unintelligible”? 

 What we want: cannot do much more 

with 𝐶’ than running it on various inputs 

◦ At least: If 𝐶 depends on some secrets that 

are not readily apparent in its I/O, then 𝐶’ 
does not reveal these secrets 

 [B+01] show that even this is impossible: 

◦ Thm: If PRFs exist, then there exists PRF 

families 𝐹 = 𝑓𝑠 , for which it is possible to 

recover 𝑠 from any circuit that computes 𝑓𝑠. 

 These PRFs are unobfuscatable 
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What’s “Unintelligible”? 

 Okay, some function are bad, but can we 

get O() that does “as well as possible” on 

every function? 

 [B+01] suggested the weaker notion of 

“indistinguishability obfuscation” (iO) 

◦ Gives the “best-possible” guarantee [GR07] 

◦ It turns out to suffice for many applications 

(examples in [GGH+13, SW13,…]) 
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Indistinguishability Obfuscation 

 Def: If 𝐶1, 𝐶2 compute the same function 
(and |𝐶1| = |𝐶2|) then 𝑂 𝐶1 ≈ 𝑂 𝐶2  
◦ Indistinguishable even if you know 𝐶1, 𝐶2 

 

 Note: Inefficient iO is always possible 
◦ 𝑂(𝐶) = lexicographically 1st circuit computing 

  the same function as 𝐶 

 

     (canonical form) 

 

◦ Canonicalization is inefficient (unless P=NP) 
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Best-Possible Obfuscation 

Some 

circuit C 

Best Obfuscation 

Indist. Obfuscation 

x 

C(x) 

Some 

circuit C 

Padding 

Indist. Obfuscation 

x 

C(x) 

≈ 
Computationally 

Indistinguishable 



Many Applications of iO 

 AES  public key encryption [GGH+13, SW13] 
 

 Witness encryption: Encrypt 𝑥 so only someone 
with proof of Riemann Hypothesis can decrypt 
[GGSW13] 

 

 Functional encryption: Noninteractive access 
control [GGH+13],  Dec(Key𝑦, Enc(𝑥))F(𝑥, 𝑦) 

 

 Many more (all of them this year)… 
 

 One notable thing iO doesn’t give us (yet): 
Homomorphic Encryption (HE) 



Beyond iO 

 For very few functions, we know how to 

achieve stronger notions than iO 

◦ “Virtual Black Box” (VBB) 

 Point-functions / cryptographic locks 

◦ 𝑓𝑎,𝑏 𝑥 = { 
𝑏    𝑖𝑓 𝑥 = 𝑎 

⊥ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

◦ [C97, CMR98, LPS04, W05]  

◦ Many extensions, generalizations [DS05, 

AW07, CD08, BC10, HMLS10, HRSV11, 

BR13] 
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Aside: Obfuscation vs. HE 
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F Obfuscation F 

F Encryption F 

x 

+  F(x) 

Result in the clear 

x 

+  F(x) 

x or Result encrypted 



OUR CONSTRUCTION 
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Obfuscating Arbitrary Circuits 

 A two-step construction 

1. Obfuscating “shallow circuits” (NC1) 

 This is where the meat is 

 Using multilinear maps 

 Security under a new (ad-hoc) assumption 

2. Bootstrapping to get all circuits 

 Using homomorphic encryption with NC1 

decryption 

 Very simple, provable, transformation 
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NC1 ObfuscationP Obfuscation 
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F 
Homomorphic 

Encryption 
F 

x 

+ F(x) 

Encrypted-result 𝑐 

+ eval transcript 𝜋 

NC1 Circuit 
If 𝜋 describes 

homomorphic evaluation 

that takes x,F to 𝑐, then 

use  sk  to decrypt 𝑐 

F(x) 

CondDec 



NC1 ObfuscationP Obfuscation 
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x 

+ F(x) 

Encrypted-result 𝐶 

+ eval transcript 𝜋 

@P=split//,".URRUU\c8

R";@d=split//,"\nrekcah 

xinU / lreP rehtona 

tsuJ";sub p{ @p{"r$p“… 

F(x) 

Obfuscate 

only this part 

NC1 Circuit 

Output of P obfuscator 

F 
Homomorphic 

Encryption 
F 

CondDec 



Conditional Decryption with iO 

 We have iO, not “perfect” obfuscation 
 

 But we can adapt the CondDec approach 

◦ We use two HE secret keys 



iO for CondDec → iO for All 

Circuits 

CondDecF,SK0(·, …, ·) 

Indist. Obfuscation 

π, x, and two ciphertexts 

c0 = EncPK0(F(x)) and               

c1 = EncPK1(F(x)) 

F(x) if π verifies 

≈ CondDecF,SK1(·, …, ·) 

Indist. Obfuscation 

π, xi’s, and two ciphertexts 

c0 = EncPK0(F(x)) and               

c1 = EncPK1(F(x)) 

F(x) if π verifies 



Analysis of Two-Key Technique 

 1st program has secret SK0 inside (but not SK1). 

 2nd program has secret SK1 inside (but not SK0). 

 But programs are indistinguishable 

 So, neither program “leaks” either secret. 

 

 Two-key trick is very handy in iO context. 

 Similar to Naor-Yung ’90 technique to get 

encryption with chosen ciphertext security 



NC1 OBFUSCATION 
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Outline of Our Construction 

 Describe Circuits as Branching Programs 
(BPs) using Barrington’s theorem [B86] 

 

 Randomized BPs (RBPs) a-la-Kilian [K88] 
 

 Encode RBPs “in the exponent” using 
multilinear maps [GGH13,CLT13] 

 

 Modifications to defeat attacks 
◦ Multiplicative bundling against ”partial evaluation” 

and “mixed input” attacks 

◦ Defenses against “DDH attacks”, “rank attacks” 
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(Oblivious) Branching Programs 

 A specific way of describing a function 

 Length-𝑚 BP with 𝑛-bit input is a sequence 

𝑗1, 𝐴1,0, 𝐴1,1 , 𝑗2, 𝐴2,0, 𝐴2,1 , … , (𝑗𝑚, 𝐴𝑚,0, 𝐴𝑚,1) 

◦ 𝑗𝑖 ∈ {1, … , 𝑛} are indexes, 𝐴𝑖,𝑏’s are matrices 

 Input 𝑥 = (𝑥1, … , 𝑥𝑛) chooses matrices 𝐴𝑖,𝑥𝑗𝑖
 

◦ Compute the product 𝑃𝑥 =  𝐴𝑖,𝑥𝑗𝑖
𝑚
𝑖=1  

◦ 𝐹 𝑥 = 1 if 𝑃𝑥 = 𝐼, else 𝐹 𝑥 = 0 
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(Oblivious) Branching Programs 

 This length-9 BP has 4-bit inputs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        0 



(Oblivious) Branching Programs 

 This length-9 BP has 4-bit inputs 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        0 1 



(Oblivious) Branching Programs 

 This length-9 BP has 4-bit inputs 

 

 

 

 

 

 

 Multiply the chosen 9 matrices together 

◦ If product is 𝐼 output 1.  Otherwise output 0. 

A2,0 A1,0 A3,0 A5,0 A4,0 A6,0 A7,0 A8,0 A9,0 

A2,1 A1,1 A3,1 A5,1 A4,1 A6,1 A7,1 A8,1 A9,1 

        0 1 1 0 



Barrington’s Theorem [B86] 

 𝐹 computable by depth-𝑑 circuit  

𝐹 computable by a BP of length 4𝑑  

◦ With constant-dimension matrices 

 Corollary: every function in NC1 has a 

polynomial-length BP 

◦ Recall: NC1 = O(log n)-depth circuits 



Oblivious BP Evaluation [K88] 

 Alice has 𝑥. Bob has 𝑦. They want Bob to get 𝐹 𝑥, 𝑦  

◦ They start with a BP= 𝑗𝑖 , 𝐴𝑖,0, 𝐴𝑖,1 𝑖=1

𝑚
 for 𝐹 

 Randomized BP Generation 
◦ Alice chooses random matrices 𝑅1, … , 𝑅𝑚, set 𝑅0 = 𝑅𝑚 

◦ RBP= 𝑗𝑖 ,  𝐵𝑖,0= 𝑅𝑖−1𝐴𝑖,0𝑅𝑖
−1,   𝐵𝑖,1 = 𝑅𝑖−1𝐴𝑖,1𝑅𝑖

−1
𝑖=1

𝑚
 

 Matrix Collection 
◦ Alice sends matrices for her input {𝐵𝑖,𝑥𝑗𝑖

∶ 𝑖 ≤ |𝑥|} 

◦ Bob gets matrices for his input via OT 

 Evaluation of Randomized BP 
◦ 𝑅𝑖 ’s and their inverses cancel, 𝑅0, 𝑅𝑚

−1 cancel if 𝑃 = 𝐼 

 Randomized BP gives Alice perfect privacy 



Kilian’s ProtocolBP-Obfuscation? 

 RBP for 𝐹𝑥 𝑦 = 𝐹(𝑥, 𝑦) with the 𝑥 part fixed 
◦ Bob gets 𝐵𝑖,𝑥𝑗𝑖

 as in Kilian, but both 𝐵𝑖,𝑏’s for 𝑦 

◦ Evaluates randomized BP in usual way, choosing 
appropriate 𝐵𝑖,0 or 𝐵𝑖,1 for the 𝑦-parts. 

 

 Biggest problems:  
◦ Perfect privacy is lost once we give both 𝐵𝑖,𝑏’s 

◦ Partial evaluation attacks: Adversary computes 
partial product of matrices from positions 𝑖1 to 𝑖2, 
makes comparisons. 

◦ Mixed Input attacks: Adversary computes matrix 
product that does not respect the BP structure. 



Multilinear Maps to Hide Matrices 

 Recall cryptographic 𝑑-multilinear map: 
◦ Groups 𝐺1, … , 𝐺𝑑 of order 𝑝, generators 𝑔1, … , 𝑔𝑑 

◦ Computable maps 𝑒𝑖𝑗: 𝐺𝑖 × 𝐺𝑗 → 𝐺𝑖+𝑗 for 𝑖 + 𝑗 ≤ 𝑑 

◦ Multi-linearity:        𝑒𝑖𝑗 𝑔𝑖
𝑎 , 𝑔𝑗

𝑏 = 𝑔𝑖+𝑗
𝑎𝑏  for all 𝑎, 𝑏 

 Cryptographic hardness: 

◦ DL analog: hard to recover 𝑎 from 𝑔𝑖
𝑎 

◦ Multilinear-DDH: Given 𝑔1
𝑎𝑖 ∈ 𝐺1 for 𝑑 + 1 random 𝑎𝑖 ’s, 

hard to distinguish 𝑔𝑑
𝑎1⋅…⋅𝑎𝑑+1 from random in 𝐺𝑑 

◦ Etc. 

 [GGH13, CLT13] don’t exactly give this 

◦ But it’s close enough for our purposes 



Multilinear Maps to Hide Matrices 

 Encode the 𝐵𝑖,𝑏’s in the exponent, 𝑔1
𝐵𝑖,𝑏 

◦ Matrix is encoded element-wise 

 Can use the maps 𝑒𝑖𝑗 ’s to multiply them 

◦ Given 𝑔𝑖
𝑀, 𝑔𝑗

𝑁, compute 𝑒 𝑖𝑗 𝑔𝑖
𝑀, 𝑔𝑗

𝑁 = 𝑔𝑖+𝑗
𝑀𝑁 

◦ From 𝑔1
𝐵𝑖,𝑏𝑖

𝑖=1..𝑚
, can compute 𝑔𝑚

𝑃 = 𝑔𝑚
 𝐵𝑖,𝑏𝑖𝑖

 

 Then we can check if 𝑃 = 𝐼 

 

 Are the 𝐵𝑖,𝑏’s really hidden? 
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“Partial Evaluation” Attacks 

 Evaluate the program on two inputs 𝑦, 𝑦′, 
but only use matrices between steps 

𝑖1, 𝑖2, 𝑃 =  𝐵𝑖,𝑦𝑗𝑖
𝑖2
𝑖=𝑖1

, 𝑃′ =  𝐵𝑖,𝑦′
𝑗𝑖

𝑖2
𝑖=𝑖1

 

◦ Check if 𝑃 = 𝑃′ 

 Roughly, you learn if in the computations 

of the circuits for 𝐹 𝑦 , 𝐹 𝑦′ , you have 

the same value on some internal wire 
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“Mixed Input” Attack 

 Inconsistent matrix selection: 

◦ Product includes 𝐵𝑖1,0 and 𝐵𝑖2,1, but these 

two steps depend on the same input bit (i.e., 

𝑗𝑖1 = 𝑗𝑖2) 

 Roughly, you learn what happens when 

fixing some internal wire in the circuit of 

𝐹 𝑦  

◦ Fixing the wire value to 0, or to 1, or copying 

value from another wire, …  
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“Multiplicative Bundling” 

 Obfuscator uses two randomized BPs 
◦ “Main BP ” computing 𝐹𝑥 𝑦 = 𝐹(𝑥, 𝑦) 

◦ “Dummy BP′ ” computing c 𝑦 = 1 
 Same length and 𝑗𝑖-assignments as the BP for 𝐹𝑥 

 All the 𝐴𝑖,𝑏
′ ’s are the identity 

 Independent randomizer matrices 𝑅𝑖
′ 

 For every step 𝑖 choose random scalars 
𝛼𝑖,0, 𝛼𝑖,1, 𝛼𝑖,0

′ , 𝛼𝑖,1
′ ← 𝑍𝑝 under the 

constraint: 
◦ For every input bit position 𝑗 and value 
𝑏 ∈ {0,1}   𝛼𝑖,𝑏 =  𝛼𝑖,𝑏

′
{𝑖:𝑗𝑖=𝑗}{𝑖:𝑗𝑖=𝑗}
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“Multiplicative Bundling” 

 Obfuscator outputs 
𝐵𝑖,𝑏 = 𝛼𝑖,𝑏 ⋅ 𝑅𝑖−1𝐴𝑖,𝑏𝑅𝑖

−1
𝑖,𝑏

 

𝐵𝑖,𝑏
′ = 𝛼𝑖,𝑏

′ ⋅ 𝑅𝑖−1
′  𝐼 𝑅𝑖

′−1

𝑖,𝑏
 

 To evaluate 𝐹 𝑦 , compute the products (in the 

exponent) 𝑃 =  𝐵𝑖,𝑦𝑗𝑖
𝑚
𝑖=1  and 𝑃′ =  𝐵′𝑖,𝑦𝑗𝑖

𝑚
𝑖=1   

 If 𝐹 𝑦 = 1 then 𝑃 = 𝑃′ = 𝛼 ⋅ 𝐼  
◦ For some constant 𝛼 (the same for 𝑃, 𝑃′) 

 

 “Partial evaluation” & “mixed input” attacks yield 
matrices that differ by a multiplicative constant 

◦ Rather than identical matrices 
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DDH Attacks 

 Identifying matrices (in the exponent) that 

differ by a multiplicative constant is DDH 
 

 But we can solve DDH using MMAPs: 

◦ Given 
𝑔𝑖
𝑎 𝑔𝑖

𝑏

𝑔𝑖
𝑐 𝑔𝑖

𝑑
, 

𝑔𝑖
𝑎′ 𝑔𝑖

𝑏′

𝑔𝑖
𝑐′ 𝑔𝑖

𝑑′
 (with 2𝑖 ≤ 𝑑), 

check 𝑒𝑖,𝑖 𝑔𝑖
𝑎, 𝑔𝑖

𝑏′ = 𝑒𝑖,𝑖 𝑔𝑖
𝑎′ , 𝑔𝑖

𝑏  etc. 

 

 Not out of the woods yet… 
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More Attacks: Determinant & Rank 

 Use MMAPs to compute determinant 

◦ E.g., given 𝑔𝐴 =
𝑔1
𝑎 𝑔1

𝑏

𝑔1
𝑐 𝑔1

𝑑
 compute 

𝑒1,1 𝑔1
𝑎, 𝑔1

𝑑 𝑒1,1 𝑔1
𝑏 , 𝑔1

𝑐 = 𝑔2
det (𝐴)

 

 For matrices of dimension ≤ 𝑑, can check 

if they are singular 

◦ Use projections to compute rank 

 Not sure how to use for actual attack, 

but it is something to look for 
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Fixing DDH, Rank Attacks 

 One option (also used in [BR13b]) is to 

switch to “asymmetric maps” 

◦ Just like XSDH for bilinear maps, DDH can 

potentially be hard in the different groups, 

even though you have pairing 

◦ A little awkward to define in the multilinear 

setting, so will not do it here 
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Fixing DDH, Rank Attacks 

 Or embed in higher-dimension matrices 

◦ Set 𝐷𝑖,𝑏 =
$

$
𝛼𝑖,𝑏𝐴𝑖,𝑏

 

◦ Then 𝐵𝑖,𝑏 = 𝑅𝑖−1𝐷𝑖,𝑏𝑅𝑖
−1 

 Matrix rank > 𝑑, too high to compute 

 $’s are independent between all the 

matrices 𝐷𝑖,0, 𝐷𝑖,1, 𝐷𝑖,0
′ , 𝐷𝑖,1

′  

◦ Matrices in attacks no longer differ just by a 

multiplicative constant factor 
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How To Evaluate? 

 We have 𝑃 =  𝐵𝑖,𝑦𝑗𝑖
𝑚
𝑖=1 = 𝑅0𝐷𝑅𝑚

−1, 

and similarly 𝑃′ = 𝑅0
′𝐷′𝑅𝑚

′−1 

◦ 𝐷′ diagonal, and if 𝐹𝑥 𝑦 = 1 then so is 𝐷 

◦ But top entries on the diagonal are random, 

different between 𝐷, 𝐷′ 

 Add pairs of “bookend” vectors 

◦ 𝒖 = 𝒔𝑅0
−1, 𝒗 = 𝑅𝑚𝒕,  𝒖

′ = 𝒔′R0
′ −1,  𝒗′ = 𝑅𝑚

′ 𝒕′  

◦ 𝒔, 𝐭, 𝐬′, 𝐭′ have 0’s to eliminate the $’s in 𝐷,𝐷′ 

◦ Compute 𝑟 = 𝒖𝑃𝒗 = 𝒔𝐷𝒕, 𝑟′ = 𝒖′𝑃′𝒗′ = 𝒔′𝐷′𝒕′, 
check that 𝑟 = 𝑟′ 
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Summary of BP-Obfuscation 

 “Main BP” for 𝐹𝑥(𝑦), “dummy” for c 𝑦 = 1 

 Multiplicative bundling with 𝛼𝑖,𝑏 , 𝛼𝑖,𝑏
′  

 Embed 𝛼𝑖,𝑏𝐴𝑖,𝑏’s in higher-degree 𝐷𝑖,𝑏’s 

 Multiply by randomizers 𝐵𝑖,𝑏 = 𝑅𝑖−1𝐷𝑖,𝑏𝑅𝑖
−1 

 Add “bookend” vectors 𝒖 = 𝒔𝑅0
−1, 𝒗 = 𝑅𝑚𝒕  

 Encode everything with (𝑚 + 2)-MMAPs 
 

 To evaluate: compare products of “main”, 

“dummy”, output 1 if they match. 
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Is This Indistinguishable? 

 It’s plausible… 

 Don’t know to distinguish 𝑂 𝐹𝑥1 , 𝑂(𝐹𝑥2), 
except by finding 𝑦 s.t. 𝐹𝑥1 𝑦 ≠ 𝐹𝑥2(𝑦) 

 We can prove that some “generic attacks” 

do not work 

 But no simple hardness assumption that 

we can reduce to 

◦ This is important future work 
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Open Problems 

 Better underlying hardness assumptions 

 Faster constructions 
◦ Complexity of our construction is horrendous 

 Better notions 
◦ iO is okay for some things, not others 

◦ Certainly does not capture our intuition of 
what an obfuscator is 
 Doesn’t even capture the intuition of what the 

current construction achieves 

 Applications 
◦ The sky is the limit… 

10/4/2013 Indistinguishability Obfuscation 47 



Thank You 

Questions? 


