
Survey of Recent Attacks

Shai Halevi (IBM Research)

NYC Crypto Day

January 2015

Graded Encoding Schemes (GES)
Very powerful crypto tools

 Resembles “Cryptographic Multilinear Maps”

Enable computation on “hidden data”

 Similar to homomorphic encryption (HE)

But HE is too “all or nothing”

 No key: result is meaningless

 Has key: can read result and intermediate values

Graded Encoding Schemes (GES)

Leak “some information” about result

 Can tell if results equals zero

 Not decrypt result or intermediate values

This partial leakage can do great things

 Multipartite non-interactive key-exchange,

Witness-encryption, Attribute-based encryption,

Cryptographic code obfuscation, Functional

encryption, …

But implementing “limited leakage” is messy

Plan for this Talk
Background

 Some details of [GGH13], [CLT13]

 The [GGH13] “zeroizing” attack

New attacks (Cheon,Han,Lee,Ryu,Stehle’14)

 Extensions of the attacks (Coron, Gentry, H, Lepoint,

Maji, Miles, Raykova, Sahai, Tibouchi’15)

 Limitations of attacks

Tentative conclusions

Constructing GES
The GGH Recipe:

Start from some HE scheme

 Publish a “defective secret key”

 Called “zero-test parameter”

 Can be used to identify encryptions of zero

 Cannot be used for decryption

 Instantiated from NTRU in [GGH13],

from approximate-GCD in [CLT13]

 Another proposal in [GGH14] (but not today)

The [GGH13] Construction
Works in polynomial rings 𝑅 = 𝑍 𝑋 /𝐹𝑛(𝑋)

 Also 𝑅𝑞 = 𝑅/𝑞𝑅 = 𝑍𝑞 𝑋 /𝐹(𝑋)

 𝑞 is a “large” integer (e.g., 𝑞 ≈ 2 𝑛)

Secrets are 𝐳 ∈$ 𝑹𝒒 and a “small” 𝒈 ∈ 𝐑

 “Plaintext space” is 𝑹𝒈 = 𝐑/𝒈𝐑

Level-𝑖 encoding of 𝛂 ∈ 𝑹𝒈 is of form 𝒆
𝒛𝒊

𝒒

 𝑒 is a “small” element in the 𝑔-coset of 𝛼

The [GGH13] Construction
Secrets are 𝒛 ∈$ 𝑹𝒒 and a “small” 𝒈 ∈ 𝑹

 “Plaintext space” is 𝑹𝒈 = 𝑹/𝒈𝑹

Level-𝑖 encoding of 𝜶 ∈ 𝑹𝒈 is of form 𝒆
𝒛𝒊

𝒒

 𝑒 is a “small” element in the 𝑔-coset of 𝛼

Can add, multriply encodings:

𝐞𝐧𝐜𝐢 𝛂 + 𝐞𝐧𝐜𝐢 𝛃 𝐪 = 𝐞𝐧𝐜𝐢(𝛂 + 𝛃)

𝐞𝐧𝐜𝐢 𝛂 ⋅ 𝐞𝐧𝐜𝐣 𝛃 𝐪
= 𝐞𝐧𝐜𝐢+𝐣(𝛂𝛃)

 As long as 𝑒 remains smaller than 𝑞

The [GGH13] Zero-Test

Level-k encoding of zero is 𝒖 =
𝒓⋅𝒈

𝒛𝒌 𝒒

Zero-test parameter is 𝒑𝒛𝒕 =
𝐡𝒛𝒌

𝒈
𝒒

 ℎ is small-ish

Multiplying we get 𝒖 ⋅ 𝒑𝒛𝒕 𝒒 = 𝐫 ⋅ 𝐡 ≪ 𝒒

 Because both 𝑟, ℎ are small

 If 𝑢 = 𝑒𝑛𝑐𝑘 𝛼 ≠ 0 then 𝑒 ⋅ 𝑝𝑧𝑡 𝑞 ≈ 𝑞

The [CLT13] Construction
Similar idea, but using CRT representation

modulo a composite integer 𝑵 = 𝒑𝟏 ⋅ … ⋅ 𝒑𝒕

 Assuming that factoring 𝑁 is hard

 The 𝑝𝑖’s are all the same size

Secrets are 𝒑𝒊’s, 𝐳 ∈$ 𝒁𝑵, and 𝒈𝒊 ≪ 𝒑𝒊’s

 “Plaintext space” consists of 𝑡-vectors

𝜶𝟏, 𝜶𝟐, … , 𝜶𝒕 ∈ 𝒁𝒈𝟏 × 𝒁𝒈𝟐 ×⋯× 𝒁𝒈𝒕

𝐂𝐑𝐓(𝒆𝟏, … , 𝒆𝒕) is the
element mod 𝑵
with this CRT
decomposition

The [CLT13] Construction
Level-𝑖 encoding of vector 𝛼1…𝛼𝑡 has the

form
𝐂𝐑𝐓(𝒆𝟏,…,𝒆𝒕)

𝒛𝒊

𝐍
, where 𝒆𝒊 = 𝒓𝒊𝒈𝒊 + 𝜶𝒊

 𝑒𝑖‘s are small element in the 𝑔𝑖-cosets of 𝛼𝑖’s

The [CLT13] Construction
Level-𝑖 encoding of vector 𝛼1…𝛼𝑡 has the

form
𝐂𝐑𝐓(𝒆𝟏,…,𝒆𝒕)

𝒛𝒊

𝐍
, where 𝒆𝒊 = 𝒓𝒊𝒈𝒊 + 𝜶𝒊

 𝑒𝑖‘s are small element in the 𝑔𝑖-cosets of 𝛼𝑖’s

Can add, multiply encodings

𝐞𝐧𝒄𝒊 𝜶 + 𝐞𝐧𝒄𝒊 𝜷 𝒒
= 𝐞𝐧𝒄𝒊(𝛂 + 𝜷)

𝐞𝐧𝒄𝒊 𝜶 ⋅ 𝐞𝐧𝒄𝒋 𝜷 𝒒
= 𝐞𝐧𝒄𝐢+𝒋(𝜶𝜷)

 As long as the 𝑒𝑖’s remain smaller than the 𝑝𝑖’s

The [CLT13] Zero-Test

Let 𝒑𝒊
∗ ≝

𝑵

𝒑𝒊
, 𝑖 = 1,… , 𝑡

Observation: Fix any 𝑒1, … , 𝑒𝑡 . Then

𝐂𝐑𝐓 𝒑𝟏
∗𝒆𝟏, … , 𝒑𝒕

∗𝒆𝒕 = ∑𝒊𝒑𝒊
∗𝒆𝒊 𝒎𝒐𝒅 𝑵

The CLT zero-test parameter is

𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏
∗𝒉𝟏𝒈𝟏

−𝟏, … , 𝒑𝒕
∗𝒉𝒕𝒈𝒕

−𝟏 ⋅ 𝒛𝒌
𝑵

 ℎ𝑖 ≪ 𝑝𝑖

The [CLT13] Zero-Test
𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏

∗𝒉𝟏𝒈𝟏
−𝟏, … , 𝒑𝒕

∗𝒉𝒕𝒈𝒕
−𝟏 ⋅ 𝒛𝒌

𝑵

An encoding of (0, … , 0) at level 𝑘 has the

form 𝒖 = 𝐂𝐑𝐓 𝐫𝟏𝒈𝟏,…,𝒓𝒕𝒈𝒕
𝒛𝒌

𝑵

 So 𝒖 ⋅ 𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏
∗𝒉𝟏𝒓𝟏, … , 𝒑𝒕

∗𝒉𝒕𝒓𝒕 = ∑𝒊 𝒑𝒊
∗𝒉𝒊𝒓𝒊

 |ℎ𝑖𝑟𝑖| ≪ 𝑝𝑖, and therefore |𝑝𝑖
∗ℎ𝑖𝑟𝑖| ≪ 𝑁

 The sum is still much smaller than 𝑁

 If 𝑢 is an encoding of non-zero at level k

then 𝑢 ⋅ 𝑝𝑧𝑡 ≈ 𝑁

Common properties of GGH, CLT

Plaintext is a vector of elements

 Size-1 vector In GGH

 There is also a GGH variant with longer vectors

An encoding 𝑢 of (𝛼1, … , 𝛼𝑡) is “related” to a

vector (𝑒1, … , 𝑒𝑡) with 𝑒𝑖 = 𝑟𝑖𝑔𝑖 + 𝛼𝑖

 We will write 𝒖 ∼ (𝒆𝟏, … , 𝒆𝒕)

 Finding the 𝑒𝑖’s means breaking the scheme

Add/mult act on the 𝑒𝑖 ’s over the integers

 No modular reduction

Common properties of GGH, CLT

 If 𝑢 is an encodings of zero at the top level

 𝒖 ∼ (𝒓𝟏𝒈𝟏, … , 𝒓𝒕𝒈𝒕)

 then by zero-testing we get 𝐳𝐭𝐬𝐭(𝒖) = ∑𝒊 𝝈𝒊𝒓𝒊

 𝝈𝒊’s are system parameters, independent of 𝒖

 𝝈 = 𝒉 for GGH, 𝝈𝒊 = 𝒑𝒊
∗𝒉𝒊 for CLT

 The computation is over the integers, without

modular reduction

(If 𝑢 encodes non-zero then we do not get an

equality over the integers)

The [GGH13] “zeroizing” attack
Say we have level-𝑖 GGH encoding of zero

 𝒖𝟎 ∼ (𝒓𝟎𝒈)

… and many other level-(𝑘 − 𝑖) encodings

 𝒖𝒋 ∼ (𝒆𝒋)

Then 𝑢0𝑢𝑗 ∼ 𝑒𝑗𝑟0𝑔 , using zero-test we get

𝒚𝒋 = 𝒛𝒕𝒔𝒕(𝒖𝟎𝒖𝒋) = 𝒉𝒓𝟎 ⋅ 𝒆𝒋

 We recover the 𝑒𝑗 ’s upto the factor ℎ′ = ℎ𝑟0

 Can compute GCDs to find, remove ℎ′

The [GGH13] “zeroizing” attack
This attack does not work for CLT

 At least not “out of the box”

 Also doesn’t work on the “vectorised” GGH variant

We have vectors 𝒖𝒋 ∼ (𝒆𝒋,𝟏, … , 𝒆𝒋,𝒕)

Applying the same procedure gives the inner

products 𝒚𝒋 = ∑𝒊 𝒓𝟎,𝒊𝝈𝒊 ⋅ 𝒆𝒋,𝒊

 Only one 𝑦𝑗 per vector of 𝑒𝑗,𝑖’s

 Not enough to do GCD’s

The Cheon et al. Attack [CHLRS14]

A major “upgrade” of the [GGH13] attack

When applicable, completely breaks CLT

 i.e., you can factor 𝑁, learn all the plaintext

Also works for the “vectorised” GGH

 Not a complete break, but as severe as

zeroizing attacks on the non-vectorised GGH

The Cheon et al. Attack [CHLRS14]
Say we have many level-𝑖 zero-encodings

 𝐮𝐣 ∼ 𝒂𝐣,𝟏𝐠𝟏, … , 𝒂𝐣,𝐭𝐠𝐭 , 𝐣 = 𝟏, 𝟐, …

… two level-𝑖′ encodings
 𝒗 ∼ 𝒃𝟏, … , 𝒃𝐭 , 𝒗′ ∼ 𝒃𝟏

′ , … , 𝒃𝒕
′

… and many encodings at level 𝑘 − 𝑖 − 𝑖′

𝐰𝐣 ∼ 𝒄𝐣,𝟏, … , 𝒄𝐣,𝒕 , 𝐣 = 𝟏, 𝟐,…

For each 𝑗1, 𝑗2, we have a level-𝑘 encoding

 𝑢𝑗1𝑣 𝑤𝑗2 ∼ (𝑎𝑗1,1𝑏1𝑐𝑗2,1 ⋅ 𝑔1, … , 𝑎𝑗1,𝑡𝑏𝑡𝑐𝑗2,𝑡 ⋅ 𝑔𝑡)

 Similarly for 𝑢𝑗1𝑣
′ 𝑤𝑗2

The Cheon et al. Attack [CHLRS14]

Zero-testing we get

 𝒚𝒋𝟏,𝒋𝟐 = 𝐳𝐭𝐬𝐭 𝐮𝐣𝟏𝐯 𝐰𝐣𝟐 = ∑𝐢 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢

 Similarly for 𝑦𝑗1,𝑗2
′ = ztst 𝑢𝑗1𝑣

′ 𝑤𝑗2

 In vector form: 𝑦𝑗1,𝑗2 =

𝑎𝑗1,1, … , 𝑎𝑗1,𝑡 ×
𝑏1𝜎1
 ⋱
 𝑏𝑡𝜎𝑡

×

𝑐𝑗2,1
⋮

𝑐𝑗2,𝑡

0

0

The Cheon et al. Attack [CHLRS14]

Zero-testing we get

 𝒚𝒋𝟏,𝒋𝟐 = 𝐳𝐭𝐬𝐭 𝐮𝐣𝟏𝐯 𝐰𝐣𝟐 = ∑𝐢 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢

 Similarly for 𝑦𝑗1,𝑗2
′ = ztst 𝑢𝑗1𝑣

′ 𝑤𝑗2

 In vector form: 𝑦𝑗1,𝑗2 =

𝑎𝑗1,1, … , 𝑎𝑗1,𝑡 ×
𝑏1𝜎1
 ⋱
 𝑏𝑡𝜎𝑡

×

𝑐𝑗2,1
⋮

𝑐𝑗2,𝑡

𝑢𝑗1 𝑤𝑗2 𝑽

0

0

The Cheon et al. Attack [CHLRS14]

Putting the 𝑦𝑗1,𝑗2’s in a 𝑡 × 𝑡 matrix we get

𝒀 = [𝒚𝒋𝟏,𝒋𝟐] = 𝑼 × 𝑽 ×𝑾

 𝑈 has the 𝑢𝑗1 ’s as rows

 𝑉 is as before

𝑊 has the 𝑤𝑗2 ’s as columns

Similarly 𝒀′ = [𝒚𝒋𝟏,𝒋𝟐
′] = 𝑼 × 𝑽′ ×𝑾

We know 𝑌, 𝑌′ but not 𝑈, 𝑉, 𝑉′,𝑊

 Importantly, equalities hold over the integers

Whp U,V,W
are invertible

The Cheon et al. Attack [CHLRS14]

Once we have 𝑌, 𝑌′ we compute

𝒁 = 𝒀−𝟏 × 𝒀′ = 𝑼𝑽𝑾 −𝟏 × 𝑼𝑽′𝑾
 = 𝑾−𝟏 × 𝑽−𝟏 × 𝑽′ ×𝑾

Recall that 𝑉−1 × 𝑉′ =
𝑏1
′/𝑏1
 ⋱
 𝑏𝑡

′/𝑏𝑡

 Eigenvalues of 𝑉−1 × 𝑉′ are 𝒃𝒊
′/𝒃𝒊, 𝑖 = 1, … , 𝑡

 Same for 𝑍 (since 𝑉−1 × 𝑉′, 𝑍 are similar)

0

0

The Cheon et al. Attack [CHLRS14]

After computing 𝑍, compute its eigenvalues

{𝑏𝑖
′/𝑏𝑖 ∶ 𝑖 = 1, … , 𝑡}

 We get 𝑏𝑖 , 𝑏𝑖
′ upto the factor 𝐺𝐶𝐷(𝑏𝑖 , 𝑏𝑖

′)

Often knowing the ratios 𝑏𝑖
′/𝑏𝑖 is enough to

violate hardness assumption

For CLT, can use 𝑏𝑖
′/𝑏𝑖 to factor 𝑁:

The Cheon et al. Attack [CHLRS14]

For CLT, can use 𝑏𝑖
′/𝑏𝑖 to factor 𝑁:

 Recall 𝒗 = 𝑪𝑹𝑻 𝒃𝟏, … , 𝒃𝒊, … , 𝒃𝒕 𝒛𝒊
′

𝑵

 𝒗′ = 𝑪𝑹𝑻 𝒃𝟏
′ , … , 𝒃𝒊

′, … , 𝒃𝒕
′ 𝒛𝒊

′

𝑵

 Express 𝑏𝑖
′/𝑏𝑖 as a simple fraction 𝑏𝑖

′/𝑏𝑖 = 𝑑𝑖
′/𝑑𝑖

 𝑑𝑖 , 𝑑𝑖
′ are co-prime

 𝒙𝒊 = 𝒅𝒊𝒗
′ − 𝒅𝒊

′𝒗 𝑵 has 0 CRT component for 𝑝𝑖

 Whp the other CRT components are not zero

Recover 𝑝𝑖 = 𝐺𝐶𝐷(𝑁, 𝑥𝑖)

Extending the Attack
Easy to see that the same attack still works

as long as 𝒖𝒋𝟏 ⋅ 𝒗 ⋅ 𝒘𝒋𝟐 and 𝒖𝒋𝟏 ⋅ 𝒗
′ ⋅ 𝒘𝒋𝟐 are

encoding of zeros for every 𝑗1, 𝑗2

 Don’t need the 𝑢𝑗1 ’s themselves to encode zero

 e.g.

𝐮𝐣 ∼ 𝒂𝐣,𝟏𝒈𝟏, 𝒂𝒋,𝟐, 𝒂𝒋,𝟑 ,

𝒗 ∼ 𝒃𝟏, 𝒃𝟐𝒈𝟐, 𝒃𝟑 and 𝒗′ ∼ 𝒃𝟏
′ , 𝒃𝟐

′ 𝒈𝟐, 𝒃𝟑
′ ,

𝒘𝒋 ∼ (𝒄𝒋,𝟏, 𝒄𝒋,𝟐 , 𝒄𝒋,𝟑𝒈𝟑)

Some Schemes are Broken
For example, schemes that publish low-level

encoding of zeros are likely broken

 Publishing zero-encoding would be useful

 E.g., to re-randomize encodings by adding a

subset-sum of these zero encodings

Even some obfuscation schemes

 E.g., the “simple IO scheme” from [Zim14]

(this requires further extending the attacks)

Many Assumptions are Broken
 “Source Group” assumptions:

 Given level-1 encodings of elements 𝛂𝟏, 𝛂𝟐, …,

cannot tell if 𝐞𝐱𝐩𝐫 𝛂 = 𝟎

 𝑒𝑥𝑝𝑟 ∗ has degree ≤ 𝑘 − 3 (say)

Generally broken, use the attack with
 𝐮𝐣 ∼ 𝐞𝐱𝐩𝐫 𝛂 ⋅ 𝛂𝐣

 𝐯 ∼ 𝜶𝟏, 𝐯
′ ∼ 𝛂𝟐

𝐰𝐣 ∼ 𝛂𝐣

Many Assumptions are Broken
Subgroup-Membership assumptions:

 Input: encoding of (𝛂, $, … , $, 𝟎, … , 𝟎)
 And some other encodings too

 Goal: distinguish 𝛂 = 𝟎 from 𝛂 = $

 Would be easy if we could get an encoding of

(∗, 𝟎, … , 𝟎, 𝝓,… ,𝝓)

 Assumption: it is hard otherwise

Broken if we can get encoding of the form

 (𝟎, 𝟎, … , 𝟎,𝝓,… ,𝝓)

Many Assumptions are Broken
Currently we have no candidate GES with

hard source-group or subgroup-membership

problems

A Suggested Fix

 Instead of 𝑢𝑗1𝑣 𝑤𝑗2 ∼ 0, maybe we can use

𝜹 = 𝒖𝒋𝟏𝒗 𝒘𝒋𝟐 − 𝒖 𝒋𝟏𝒗 𝒘 𝒋𝟐 ∼ 𝟎

 For encodings 𝑢𝑗 , 𝑣, 𝑤 and 𝑢𝑗 , 𝑣 , 𝑤𝑗

This was suggested as a fix to the attacks

 It is always possible to convert 𝒖𝒋𝟏𝒗 𝒘𝒋𝟐 ∼ 𝟎

to get the weaker condition [BWZ14]

 Similar fix mentioned in [GGHZ14]

But the attack can be extended to defeat it

Further Extending the Attack
We mount the same attack, using vectors of

double the length
𝒛𝒕𝒔𝒕 𝜹 = ∑𝒊 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢 − ∑𝒊 𝒂 𝐣𝟏,𝐢𝒃

𝐢𝒄 𝐣𝟐,𝐢 ⋅ 𝛔𝐢 /𝒈

 Similar to before, but now we have 1/𝑔 factor

 𝑔 = 𝐶𝑅𝑇(𝑔1, … , 𝑔𝑡) in CLT

Equality holds over the integers/rationals!

So 𝒀 = 𝑼 × 𝑽 ×𝑾 ⋅ 𝟏 𝒈 , and the same for 𝒀′

When setting 𝑍 = 𝑌−1 × 𝑌′, the 1 𝑔 falls off

Limitations of the Attacks

Rely on partitioning 𝑦𝑗1,𝑗2 = 𝑢𝑗1 ⋅ 𝑣 ⋅ 𝑤𝑗2 ∼ 0

 We can vary 𝑢𝑗1without affecting 𝑣, 𝑤𝑗2

 Similarly can vary 𝑤𝑗2 without affecting 𝑣, 𝑢𝑗1

Many applications do not give such nicely

partitioned encoding of zeros

 E.g., [GGHRSW13] use Barrington BPs

 You get encoding of zeros in the form 𝑢 × 𝑉𝑖𝑖 × 𝑤

 But changing any bit in the input affects many 𝑉𝑖 ’s

 Some applications have explicit binding factors

Final Musings About Security
Current Graded Encoding Schemes “hide”

encoded values behind mod-𝑞 relations

 Solving mod-𝑞 relations directly involves solving

lattice problems (since we need small solutions)

But zero-test parameter lets you “strip” the

mod-q part, get relations over the integers

 No more lattice problems, any solution will do

 Can only get these relations when you have an

encoding of zero

Final Musings About Security
Security relies on the adversary’s inability to

solve these relations

 By the time you get a zero, the relations are too

complicated to solve

Security feels more like HFE than FHE

 HFE: Hidden Field Equations

 FHE: Fully-Homomorphic Encryption

 It’s going to be a bumpy ride..

