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Graded Encoding Schemes (GES) 
Very powerful crypto tools 

 Resembles “Cryptographic Multilinear Maps” 

Enable computation on “hidden data” 

 Similar to homomorphic encryption (HE) 

 

But HE is too “all or nothing” 

 No key: result is meaningless 

 Has key: can read result and intermediate values 

  



Graded Encoding Schemes (GES) 

Leak “some information” about result 

 Can tell if results equals zero 

 Not decrypt result or intermediate values 

This partial leakage can do great things 

 Multipartite non-interactive key-exchange, 

Witness-encryption, Attribute-based encryption, 

Cryptographic code obfuscation, Functional 

encryption, … 

But implementing “limited leakage” is messy 



Plan for this Talk 
Background 

 Some details of [GGH13], [CLT13] 

 The [GGH13] “zeroizing” attack 

New attacks (Cheon,Han,Lee,Ryu,Stehle’14) 

 Extensions of the attacks (Coron, Gentry, H, Lepoint, 

Maji, Miles, Raykova, Sahai, Tibouchi’15) 

 Limitations of attacks 

Tentative conclusions 



Constructing GES 
The GGH Recipe: 

Start from some HE scheme 

 Publish a “defective secret key” 

 Called “zero-test parameter” 

 Can be used to identify encryptions of zero 

 Cannot be used for decryption 

 Instantiated from NTRU in [GGH13], 

from approximate-GCD in [CLT13] 

 Another proposal in [GGH14] (but not today) 



The [GGH13] Construction 
Works in polynomial rings 𝑅 = 𝑍 𝑋 /𝐹𝑛(𝑋) 

 Also 𝑅𝑞 = 𝑅/𝑞𝑅 = 𝑍𝑞 𝑋 /𝐹(𝑋) 

 𝑞 is a “large” integer (e.g., 𝑞 ≈ 2 𝑛) 

Secrets are 𝐳 ∈$ 𝑹𝒒 and a “small” 𝒈 ∈ 𝐑 

 “Plaintext space” is 𝑹𝒈 = 𝐑/𝒈𝐑 

Level-𝑖 encoding of 𝛂 ∈ 𝑹𝒈 is of form 𝒆
𝒛𝒊 

𝒒
 

 𝑒 is a “small” element in the 𝑔-coset of 𝛼 



The [GGH13] Construction 
Secrets are 𝒛 ∈$ 𝑹𝒒 and a “small” 𝒈 ∈ 𝑹 

 “Plaintext space” is 𝑹𝒈 = 𝑹/𝒈𝑹 

Level-𝑖 encoding of 𝜶 ∈ 𝑹𝒈 is of form 𝒆
𝒛𝒊 

𝒒
 

 𝑒 is a “small” element in the 𝑔-coset of 𝛼 

Can add, multriply encodings: 

𝐞𝐧𝐜𝐢 𝛂 + 𝐞𝐧𝐜𝐢 𝛃 𝐪 = 𝐞𝐧𝐜𝐢(𝛂 + 𝛃) 

𝐞𝐧𝐜𝐢 𝛂 ⋅ 𝐞𝐧𝐜𝐣 𝛃 𝐪
= 𝐞𝐧𝐜𝐢+𝐣(𝛂𝛃) 

 As long as 𝑒 remains smaller than 𝑞 



The [GGH13] Zero-Test 

Level-k encoding of zero is 𝒖 =
𝒓⋅𝒈

𝒛𝒌 𝒒
 

Zero-test parameter is 𝒑𝒛𝒕 =
𝐡𝒛𝒌

𝒈 
𝒒
 

 ℎ is small-ish 

Multiplying we get 𝒖 ⋅ 𝒑𝒛𝒕 𝒒 = 𝐫 ⋅ 𝐡 ≪ 𝒒 

 Because both 𝑟, ℎ are small 

 If 𝑢 = 𝑒𝑛𝑐𝑘 𝛼 ≠ 0  then 𝑒 ⋅ 𝑝𝑧𝑡 𝑞 ≈ 𝑞 



The [CLT13] Construction 
Similar idea, but using CRT representation 

modulo a composite integer 𝑵 = 𝒑𝟏 ⋅ … ⋅ 𝒑𝒕 

 Assuming that factoring 𝑁 is hard 

 The 𝑝𝑖’s are all the same size 
 

Secrets are 𝒑𝒊’s, 𝐳 ∈$ 𝒁𝑵, and 𝒈𝒊 ≪ 𝒑𝒊’s 

 “Plaintext space” consists of 𝑡-vectors 

𝜶𝟏, 𝜶𝟐, … , 𝜶𝒕 ∈ 𝒁𝒈𝟏 × 𝒁𝒈𝟐 ×⋯× 𝒁𝒈𝒕 



𝐂𝐑𝐓(𝒆𝟏, … , 𝒆𝒕) is  the 
element  mod 𝑵 
with  this  CRT 
decomposition 

The [CLT13] Construction 
Level-𝑖 encoding of vector 𝛼1…𝛼𝑡  has the 

form 
𝐂𝐑𝐓(𝒆𝟏,…,𝒆𝒕)

𝒛𝒊
 

𝐍
, where 𝒆𝒊 = 𝒓𝒊𝒈𝒊 + 𝜶𝒊 

 𝑒𝑖‘s are small element in the 𝑔𝑖-cosets of 𝛼𝑖’s 



The [CLT13] Construction 
Level-𝑖 encoding of vector 𝛼1…𝛼𝑡  has the 

form 
𝐂𝐑𝐓(𝒆𝟏,…,𝒆𝒕)

𝒛𝒊
 

𝐍
, where 𝒆𝒊 = 𝒓𝒊𝒈𝒊 + 𝜶𝒊 

 𝑒𝑖‘s are small element in the 𝑔𝑖-cosets of 𝛼𝑖’s 
 

Can add, multiply encodings 

𝐞𝐧𝒄𝒊 𝜶 + 𝐞𝐧𝒄𝒊 𝜷 𝒒
= 𝐞𝐧𝒄𝒊(𝛂 + 𝜷) 

𝐞𝐧𝒄𝒊 𝜶 ⋅ 𝐞𝐧𝒄𝒋 𝜷 𝒒
= 𝐞𝐧𝒄𝐢+𝒋(𝜶𝜷) 

 As long as the 𝑒𝑖’s remain smaller than the 𝑝𝑖’s  



The [CLT13] Zero-Test 

Let 𝒑𝒊
∗ ≝

𝑵

𝒑𝒊
, 𝑖 = 1,… , 𝑡 

 

Observation: Fix any 𝑒1, … , 𝑒𝑡 . Then 
 

𝐂𝐑𝐓 𝒑𝟏
∗𝒆𝟏, … , 𝒑𝒕

∗𝒆𝒕 = ∑𝒊𝒑𝒊
∗𝒆𝒊 𝒎𝒐𝒅 𝑵 

 

The CLT zero-test parameter is 

𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏
∗𝒉𝟏𝒈𝟏

−𝟏, … , 𝒑𝒕
∗𝒉𝒕𝒈𝒕

−𝟏 ⋅ 𝒛𝒌
𝑵

 

 ℎ𝑖 ≪ 𝑝𝑖 



The [CLT13] Zero-Test 
𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏

∗𝒉𝟏𝒈𝟏
−𝟏, … , 𝒑𝒕

∗𝒉𝒕𝒈𝒕
−𝟏 ⋅ 𝒛𝒌

𝑵
 

An encoding of (0, … , 0) at level 𝑘 has the 

form 𝒖 = 𝐂𝐑𝐓 𝐫𝟏𝒈𝟏,…,𝒓𝒕𝒈𝒕
𝒛𝒌
 

𝑵
 

 So 𝒖 ⋅ 𝒑𝒛𝒕 = 𝑪𝑹𝑻 𝒑𝟏
∗𝒉𝟏𝒓𝟏, … , 𝒑𝒕

∗𝒉𝒕𝒓𝒕 = ∑𝒊 𝒑𝒊
∗𝒉𝒊𝒓𝒊 

 |ℎ𝑖𝑟𝑖| ≪ 𝑝𝑖, and therefore |𝑝𝑖
∗ℎ𝑖𝑟𝑖| ≪ 𝑁 

 The sum is still much smaller than 𝑁 

 If 𝑢 is an encoding of non-zero at level k 

then 𝑢 ⋅ 𝑝𝑧𝑡 ≈ 𝑁 



Common properties of GGH, CLT 

Plaintext is a vector of elements 

 Size-1 vector In GGH 

 There is also a GGH variant with longer vectors 

An encoding 𝑢 of (𝛼1, … , 𝛼𝑡) is “related” to a 

vector (𝑒1, … , 𝑒𝑡) with 𝑒𝑖 = 𝑟𝑖𝑔𝑖 + 𝛼𝑖 

 We will write 𝒖 ∼ (𝒆𝟏, … , 𝒆𝒕) 

 Finding the 𝑒𝑖’s means breaking the scheme 

Add/mult act on the 𝑒𝑖 ’s over the integers 

 No modular  reduction 



Common properties of GGH, CLT 

 If 𝑢 is an encodings of zero at the top level 

 𝒖 ∼ (𝒓𝟏𝒈𝟏, … , 𝒓𝒕𝒈𝒕)  

 then by zero-testing we get 𝐳𝐭𝐬𝐭(𝒖) = ∑𝒊 𝝈𝒊𝒓𝒊 

 𝝈𝒊’s are system parameters, independent of 𝒖 

 𝝈 = 𝒉 for GGH, 𝝈𝒊 = 𝒑𝒊
∗𝒉𝒊 for CLT 

 The computation is over the integers, without 

modular reduction 

(If 𝑢 encodes non-zero then we do not get an 

equality over the integers) 





The [GGH13] “zeroizing” attack 
Say we have level-𝑖 GGH encoding of zero 

 𝒖𝟎 ∼ (𝒓𝟎𝒈) 

… and many other level-(𝑘 − 𝑖) encodings 

 𝒖𝒋 ∼ (𝒆𝒋) 

Then 𝑢0𝑢𝑗 ∼ 𝑒𝑗𝑟0𝑔 , using zero-test we get 

𝒚𝒋 = 𝒛𝒕𝒔𝒕(𝒖𝟎𝒖𝒋) = 𝒉𝒓𝟎 ⋅ 𝒆𝒋 

 We recover the 𝑒𝑗 ’s upto the factor ℎ′ = ℎ𝑟0 

 Can compute GCDs to find, remove ℎ′ 



The [GGH13] “zeroizing” attack 
This attack does not work for CLT 

 At least not “out of the box” 

 Also doesn’t work on the “vectorised” GGH variant 

We have vectors 𝒖𝒋 ∼ (𝒆𝒋,𝟏, … , 𝒆𝒋,𝒕) 

Applying the same procedure gives the inner 

products 𝒚𝒋 = ∑𝒊 𝒓𝟎,𝒊𝝈𝒊 ⋅ 𝒆𝒋,𝒊 

 Only one 𝑦𝑗 per vector of 𝑒𝑗,𝑖’s 

 Not enough to do GCD’s 



The Cheon et al. Attack [CHLRS14] 

A major “upgrade” of the [GGH13] attack 

When applicable, completely breaks CLT 

 i.e., you can factor 𝑁, learn all the plaintext 

Also works for the “vectorised” GGH 

 Not a complete break, but as severe as 

zeroizing attacks on the non-vectorised GGH 



The Cheon et al. Attack [CHLRS14] 
Say we have many level-𝑖 zero-encodings 

 𝐮𝐣 ∼ 𝒂𝐣,𝟏𝐠𝟏, … , 𝒂𝐣,𝐭𝐠𝐭 , 𝐣 = 𝟏, 𝟐, … 

… two level-𝑖′ encodings  
 𝒗 ∼ 𝒃𝟏, …  , 𝒃𝐭 , 𝒗′ ∼ 𝒃𝟏

′ , …  , 𝒃𝒕
′  

… and many encodings at level 𝑘 − 𝑖 − 𝑖′ 

𝐰𝐣 ∼ 𝒄𝐣,𝟏, …  , 𝒄𝐣,𝒕 , 𝐣 = 𝟏, 𝟐,… 

For each 𝑗1, 𝑗2, we have a level-𝑘 encoding 

 𝑢𝑗1𝑣 𝑤𝑗2 ∼ (𝑎𝑗1,1𝑏1𝑐𝑗2,1 ⋅ 𝑔1, … , 𝑎𝑗1,𝑡𝑏𝑡𝑐𝑗2,𝑡 ⋅ 𝑔𝑡) 

 Similarly for 𝑢𝑗1𝑣
′ 𝑤𝑗2 



The Cheon et al. Attack [CHLRS14] 

Zero-testing we get 

 𝒚𝒋𝟏,𝒋𝟐 = 𝐳𝐭𝐬𝐭 𝐮𝐣𝟏𝐯 𝐰𝐣𝟐 = ∑𝐢 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢 

 Similarly for 𝑦𝑗1,𝑗2
′ = ztst 𝑢𝑗1𝑣

′ 𝑤𝑗2  

 In vector form: 𝑦𝑗1,𝑗2 = 

𝑎𝑗1,1, … , 𝑎𝑗1,𝑡 ×
𝑏1𝜎1   
 ⋱  
  𝑏𝑡𝜎𝑡

×

𝑐𝑗2,1
⋮

𝑐𝑗2,𝑡
 

0 

0 



The Cheon et al. Attack [CHLRS14] 

Zero-testing we get 

 𝒚𝒋𝟏,𝒋𝟐 = 𝐳𝐭𝐬𝐭 𝐮𝐣𝟏𝐯 𝐰𝐣𝟐 = ∑𝐢 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢 

 Similarly for 𝑦𝑗1,𝑗2
′ = ztst 𝑢𝑗1𝑣

′ 𝑤𝑗2  

 In vector form: 𝑦𝑗1,𝑗2 = 

𝑎𝑗1,1, … , 𝑎𝑗1,𝑡 ×
𝑏1𝜎1   
 ⋱  
  𝑏𝑡𝜎𝑡

×

𝑐𝑗2,1
⋮

𝑐𝑗2,𝑡
 

𝑢𝑗1 𝑤𝑗2  𝑽 

0 

0 



The Cheon et al. Attack [CHLRS14] 

Putting the 𝑦𝑗1,𝑗2’s in a 𝑡 × 𝑡 matrix we get 

𝒀 = [𝒚𝒋𝟏,𝒋𝟐] = 𝑼 × 𝑽 ×𝑾 

 𝑈 has the 𝑢𝑗1 ’s as rows 

 𝑉 is as before 

𝑊 has the 𝑤𝑗2 ’s as columns 

Similarly 𝒀′ = [𝒚𝒋𝟏,𝒋𝟐
′ ] = 𝑼 × 𝑽′ ×𝑾 

We know 𝑌, 𝑌′ but not 𝑈, 𝑉, 𝑉′,𝑊 

 Importantly, equalities hold over the integers 

Whp U,V,W 
are invertible 



The Cheon et al. Attack [CHLRS14] 

Once we have 𝑌, 𝑌′ we compute 

𝒁 = 𝒀−𝟏 × 𝒀′ = 𝑼𝑽𝑾 −𝟏 × 𝑼𝑽′𝑾  
                          = 𝑾−𝟏 × 𝑽−𝟏 × 𝑽′ ×𝑾 

Recall that 𝑉−1 × 𝑉′ =
𝑏1
′/𝑏1   
 ⋱  
  𝑏𝑡

′/𝑏𝑡

 

 Eigenvalues of 𝑉−1 × 𝑉′ are 𝒃𝒊
′/𝒃𝒊, 𝑖 = 1, … , 𝑡 

 Same for 𝑍 (since 𝑉−1 × 𝑉′, 𝑍 are similar) 

0 

0 



The Cheon et al. Attack [CHLRS14] 

After computing 𝑍, compute its eigenvalues 

{𝑏𝑖
′/𝑏𝑖 ∶ 𝑖 = 1, … , 𝑡} 

 We get 𝑏𝑖 , 𝑏𝑖
′ upto the factor 𝐺𝐶𝐷(𝑏𝑖 , 𝑏𝑖

′) 
 

Often knowing the ratios 𝑏𝑖
′/𝑏𝑖 is enough to 

violate hardness assumption 
 

For CLT, can use 𝑏𝑖
′/𝑏𝑖 to factor 𝑁: 

 



The Cheon et al. Attack [CHLRS14] 

For CLT, can use 𝑏𝑖
′/𝑏𝑖 to factor 𝑁: 

 Recall 𝒗 = 𝑪𝑹𝑻 𝒃𝟏, … , 𝒃𝒊, … , 𝒃𝒕 𝒛𝒊
′

 
𝑵

 

     𝒗′ = 𝑪𝑹𝑻 𝒃𝟏
′ , … , 𝒃𝒊

′, … , 𝒃𝒕
′ 𝒛𝒊

′
 

𝑵
 

 Express 𝑏𝑖
′/𝑏𝑖 as a simple fraction 𝑏𝑖

′/𝑏𝑖 = 𝑑𝑖
′/𝑑𝑖 

 𝑑𝑖 , 𝑑𝑖
′ are co-prime 

 𝒙𝒊 = 𝒅𝒊𝒗
′ − 𝒅𝒊

′𝒗 𝑵 has 0 CRT component for 𝑝𝑖 

 Whp the other CRT components are not zero 

Recover 𝑝𝑖 = 𝐺𝐶𝐷(𝑁, 𝑥𝑖) 



Extending the Attack 
Easy to see that the same attack still works 

as long as 𝒖𝒋𝟏 ⋅ 𝒗 ⋅ 𝒘𝒋𝟐 and 𝒖𝒋𝟏 ⋅ 𝒗
′ ⋅ 𝒘𝒋𝟐  are 

encoding of zeros for every 𝑗1, 𝑗2 

 Don’t need the 𝑢𝑗1 ’s themselves to encode zero 

 e.g.  

𝐮𝐣 ∼ 𝒂𝐣,𝟏𝒈𝟏, 𝒂𝒋,𝟐, 𝒂𝒋,𝟑 , 

𝒗 ∼    𝒃𝟏,   𝒃𝟐𝒈𝟐, 𝒃𝟑  and 𝒗′ ∼ 𝒃𝟏
′ ,  𝒃𝟐

′ 𝒈𝟐, 𝒃𝟑
′ , 

𝒘𝒋 ∼   (𝒄𝒋,𝟏,  𝒄𝒋,𝟐 , 𝒄𝒋,𝟑𝒈𝟑)  





Some Schemes are Broken 
For example, schemes that publish low-level 

encoding of zeros are likely broken 

 Publishing zero-encoding would be useful 

 E.g., to re-randomize encodings by adding a 

subset-sum of these zero encodings 

Even some obfuscation schemes 

 E.g., the “simple IO scheme” from [Zim14]  

(this requires further extending the attacks) 



Many Assumptions are Broken 
 “Source Group” assumptions: 

 Given level-1 encodings of elements 𝛂𝟏, 𝛂𝟐, …, 

cannot tell if 𝐞𝐱𝐩𝐫 𝛂 = 𝟎 

 𝑒𝑥𝑝𝑟 ∗  has degree ≤ 𝑘 − 3 (say) 

Generally broken, use the attack with 
 𝐮𝐣 ∼ 𝐞𝐱𝐩𝐫 𝛂 ⋅ 𝛂𝐣 

 𝐯 ∼ 𝜶𝟏, 𝐯
′ ∼ 𝛂𝟐 

𝐰𝐣 ∼ 𝛂𝐣 



Many Assumptions are Broken 
Subgroup-Membership assumptions: 

 Input: encoding of (𝛂, $, … , $, 𝟎, … , 𝟎) 
 And some other encodings too 

 Goal: distinguish 𝛂 = 𝟎 from 𝛂 = $ 

 Would be easy if we could get an encoding of 

(∗, 𝟎, … , 𝟎, 𝝓,… ,𝝓) 

 Assumption: it is hard otherwise 

Broken if we can get encoding of the form 

 (𝟎, 𝟎, … , 𝟎,𝝓,… ,𝝓) 

 



Many Assumptions are Broken 
Currently we have no candidate GES with 

hard source-group or subgroup-membership 

problems 



A Suggested Fix 

 Instead of 𝑢𝑗1𝑣 𝑤𝑗2 ∼ 0, maybe we can use 

𝜹 = 𝒖𝒋𝟏𝒗 𝒘𝒋𝟐 − 𝒖 𝒋𝟏𝒗 𝒘 𝒋𝟐 ∼ 𝟎 

 For encodings 𝑢𝑗 , 𝑣, 𝑤 and 𝑢𝑗 , 𝑣 , 𝑤𝑗  

This was suggested as a fix to the attacks 

 It is always possible to convert 𝒖𝒋𝟏𝒗 𝒘𝒋𝟐 ∼ 𝟎  

to get the weaker condition [BWZ14] 

 Similar fix mentioned in [GGHZ14] 

But the attack can be extended to defeat it 



Further Extending the Attack 
We mount the same attack, using vectors of 

double the length 
𝒛𝒕𝒔𝒕 𝜹 = ∑𝒊 𝒂𝐣𝟏,𝐢𝒃𝐢𝒄𝐣𝟐,𝐢 ⋅ 𝛔𝐢 − ∑𝒊 𝒂 𝐣𝟏,𝐢𝒃

 
𝐢𝒄 𝐣𝟐,𝐢 ⋅ 𝛔𝐢 /𝒈 

 Similar to before, but now we have 1/𝑔 factor 

 𝑔 = 𝐶𝑅𝑇(𝑔1, … , 𝑔𝑡) in CLT 

Equality holds over the integers/rationals! 

So 𝒀 = 𝑼 × 𝑽 ×𝑾 ⋅ 𝟏 𝒈 , and the same for 𝒀′ 

When setting 𝑍 = 𝑌−1 × 𝑌′, the 1 𝑔  falls off 



Limitations of the Attacks 

Rely on partitioning 𝑦𝑗1,𝑗2 = 𝑢𝑗1 ⋅ 𝑣 ⋅ 𝑤𝑗2 ∼ 0 

 We can vary 𝑢𝑗1without affecting 𝑣, 𝑤𝑗2 

 Similarly can vary 𝑤𝑗2 without affecting 𝑣, 𝑢𝑗1 

Many applications do not give such nicely 

partitioned encoding of zeros 

 E.g., [GGHRSW13] use Barrington BPs 

 You get encoding of zeros in the form 𝑢 ×  𝑉𝑖𝑖 × 𝑤 

 But changing any bit in the input affects many 𝑉𝑖 ’s 

 Some applications have explicit binding factors 

 



Final Musings About Security 
Current Graded Encoding Schemes “hide” 

encoded values behind mod-𝑞 relations 

 Solving mod-𝑞 relations directly involves solving 

lattice problems (since we need small solutions) 

But zero-test parameter lets you “strip” the 

mod-q part, get relations over the integers 

 No more lattice problems, any solution will do 

 Can only get these relations when you have an 

encoding of zero 



Final Musings About Security 
Security relies on the adversary’s inability to 

solve these relations 

 By the time you get a zero, the relations are too 

complicated to solve 

Security feels more like HFE than FHE 

 HFE: Hidden Field Equations 

 FHE: Fully-Homomorphic Encryption 

 It’s going to be a bumpy ride.. 


