— .

/w

Graded Encoding Schemes:
Survey of Recent Attacks

Graded Encoding Schemes (GES)

Very powerful crypto tools
e Resembles “Cryptographic Multilinear Maps”

Enable computation on “hidden data”
e Similar to homomorphic encryption (HE)

But HE is too "all or nothing” @
e No key: result is meaningless T
e Has key: can read result and intermediate values

Graded Encoding Schemes (GES)

Leak “some information” about result
e Can tell if results equals zero
e Not decrypt result or intermediate values

This partial leakage can do great things

e Multipartite non-interactive key-exchange,
Witness-encryption, Attribute-based encryption,
Cryptographic code obfuscation, Functional
encryption, ...

But implementing “limited leakage” is messy

—

Plan for this Talk =
SN
Background Q\//// k

e Some detalls of [GGH13], [CLT13]
e The [GGH13] “zeroizing” attack
New attacks (Cheon,Han,Lee,Ryu,Stehle’14)

o Extensions of the attacks (Coron, Gentry, H, Lepoint,
Maji, Miles, Raykova, Sahai, Tibouchi'15)

e Limitations of attacks
Tentative conclusions

Constructing GES

The GGH Recipe:

Start from some HE scheme

e Publish a “defective secret key”
 Called “zero-test parameter”

e Can be used to identify encryptions of zero
» Cannot be used for decryption

Instantiated from NTRU in [GGH13],
from approximate-GCD in [CLT13]

e Another proposal in [GGH14] (but not today)

/ .

The IGGH13] Constructiohw

Works in polynomial rings R = Z|X]/E,(X)
* Also R, = R/qR = Z,[X]/F(X)

e g is a “large” integer (e.g., ¢ ~ 2V™)
Secrets are z €5 R, and a "small” g € R
"Plaintext space” is R, = R/gR

Level-i encoding of « € R, is of form ["/Zi]q

e e is a "small” element in the g-coset of o

" The [GGH13] Construction

o Secrets are z €5 R, and a “small” g € R
e “Plaintext space” is R, = R/gR
* Level-i encoding of a € R Is of form [e/zi]q

e ¢ is a "small” element in the g-coset of a

» Can add, multriply encodings:
enc;(a) + enc;(B)]q = enc;(a + B)

:enCi(a) ' encj(ﬁ)] a enci(ap)

e As long as e remains smaller than g

N

The [GGH13] Zero-Test
Level-k encoding of zero is u = [2—,‘?]
q

Zero-test parameter is p,; = [hzk/ g]q

e h Is small-ish

Multiplying we get |[u - p,.],| = Ir-h| < q
e Because both r, h are small

If u = ency,(a # 0) then ‘[e : pzt]ql |

The [CLT13] Construction

Similar idea, but using CRT representation
modulo a composite integer N = p4 - ... p;

e Assuming that factoring N is hard
e The p;’'s are all the same size

Secretsare p;s,z €4 Zy,and g; K p;’s

“Plaintext space” consists of t-vectors
e, a, a)cZ x7 <X X/

o

-
AN
A PN P P

e [CLT13] Construction

* Level-i encoding of vector (a; ... a;) has the
form [“*" "’1"""”t)/zi]N, where e; = r;9; + «;

........

e ¢;'s are small element in the g;-cosets of a;’s

CRT(eq, ..., €;) is the
element mod N

with this CRT
decomposition

"~ The [CLT13] Construction

* Level-i encoding of vector (a; ...a;) has the
form [CRT("l""'et)/Zi]N, where e; = r;g; + a;

e ¢;'s are small element in the g;-cosets of a;’s

» Can add, multiply encodings \
enc;(d) + enci(ﬁ)]q = enc;(a + B)

enc;(a) - encj(ﬁ)]q = enciﬂ-(a—ﬁ))

e As long as the e;’s remain smaller than the p;’s

vvvvvv
qqqqqqq

- The [CLT13] Zero-Test

% N .
o| el p; defp_,l= 1 .. I

* Observation: Fix any (eq, ..., e;). Then
CRT(p;eq, .-, Pie;) = Y;pje;mod N

* The CLT zero-test parameter Is
Pz = [CRT(pihig7", .. Pihegt ") - 24|
° |h;| K p;

N

" The [CLT13] Zero-Test

*ps = [CRT(p1h197", .. . Piheg?) - 2],
* An encoding of (0, ..., 0) at level k has the
form u — [CRT(rlgl,...,rtgt)/ k]
2 1y

* S0 u-p, = CRT(p1hyry, ..., Pehery) = X, Pi by
o |h;i1i| < p;, and therefore |p; h;1;| K N
e The sum is still much smaller than N

* |If u Is an encoding of non-zero at level k
then |[u-p,| = N

/ |

Coﬁmmon properties of GGH, CLT

Plaintext I1s a vector of elements
e Size-1 vector In GGH

» There is also a GGH variant with longer vectors

An encoding u of (a4, ..., a;) Is “related” to a
vector (eq, ...,e;) With e; = 1;9; + «;

e We will write u ~ (eq, ..., ;)

e Finding the e;'s means breaking the scheme
Add/mult act on the e;’s over the integers

e No modular reduction

/ '

g e e e

Coﬂmmon properties of GGH, CLT

If u Is an encodings of zero at the top level
*u~ (rigi - rege)
then by zero-testing we get ztst(u) =)}, o;7;
e g;'s are system parameters, independent of u
e 0 = h for GGH, o; = p;h,; for CLT

e The computation is over the integers, without
modular reduction

(If u encodes non-zero then we do not get an
equality over the integers)

Attacks

The [GGH13] “zeroizing” attack

Say we have level-i GGH encoding of zero

* Uy ~ (rog)

... and many other level-(k — i) encodings

°u; ~ (ej)

Then uyu; ~ (e;19), using zero-test we get
yj = ztst(upu;) = hry - e;

» We recover the e;’s upto the factor h' = hr
e Can compute GCDs to find, remove h'

The [GGH13] “zeroizing” attack

This attack does not work for CLT

e At least not “out of the box”
e Also doesn’t work on the “vectorised” GGH variant

We have vectors u; ~ (€4, ...,€;j)

Applying the same procedure gives the inner
prOdUCtS y] . Zi roi0; " e]-,l-

* Only one y; per vector of ¢; ;’s
e Not enough to do GCD’s

/ |

Thé Cheon et al. Attack [CHLRS14]

A major “upgrade” of the [GGH13] attack
When applicable, completely breaks CLT
e |.e., you can factor N, learn all the plaintext

Also works for the “vectorised” GGH

e Not a complete break, but as severe as
zeroizing attacks on the non-vectorised GGH

Say we have many level-i zero-encodings

® u]- e (ajllgl, ...,a]-,tgt),] - 1, 2,

... two level-i’ encodings

ev~(h; b)YV ~(b, . b))

... and many encodings at level k —i — i’

o W] ot (Cj,l' Lo Cj,t):] o 1,2,...

For each j;, j,, we have a level-k encoding
e ujlv W_]2 o (ajl,lblcjz,l : gl’ ol ajl,tbtcjz,t : gt)

e Similarly for u; v’ w;,

- The Cheon et al. Attack [CHLRS14]
Zero-testing we get
* Vjuj, = 2t (W, v Wj,) = 3 @y ibici - 0
e Similarly for y; . = ztst(u;,v' w;,)

In vector form: y; ;. =

b10'1 O Cj2'1
(ajl’l, i ajl’t) X O D7 :
bio¢

N

The Cheon et al. Attack [CHLRS14]

Zero-testing we get
Y = ZtSt(uhVWiz) = i 4,,ibiCj, i * Oj
e Similarly for y; . = ztst(u;,v' w;,)

In vector form: y; ;. =

(ajl’l, i ajl’t) X O D7 :
bi0¢

! : | : : | e

/ .

The Cheon et al. Attack [CHLRS14]

Putting the y; ;. ’'sinat Xt matrix we get
Yy — [y]'1,]'2] =UXVXW

—_

e U has the W-l”s as rows
Whp U, VW

e I/ IS as before ~ are invertible

W has the w; ’s as columns
Similarly Y’ = [y; ;,] =UXV' XW

We know Y,Y' butnot U,V,V', W
Importantly, equalities hold over the integers

" The Cheon et al. Attack [CHLRS14]

Once we have Y,Y’' we compute
Z=Y1xY =Wvw) 1 x (Uv'w)
= w1 x@l XDX w

by /b, | 0
0

e Eigenvalues of V-1 x V' are b:/b;, i =1, ...,t
e Same for Z (since V~! x V', Z are similar)

Recallthat V™1 x V' =

The Cheon et al. Attack [CHLRS14]

After computing Z, compute its eigenvalues
b =1 [
» We get b;, b; upto the factor GCD(b;, b;)

Often knowing the ratios b; /b; is enough to
violate hardness assumption

For CLT, can use b; /b; to factor N:

N

The Cheon et al. Attack [CHLRS14]

For CLT, can use b; /bl- to factor N:

e Recall v = [CRT (b4, ..., b;, .. bt)/zi"N
E = CRT(bl, .. b, bt)/z I

e Express b; /b; as a simple fraction b;/b; = d;/d;

» d;, d; are co-prime

e x; = |d;v' — d;v]|y has 0 CRT component for p;

e Whp the other CRT components are not zero

=>»Recover p; = GCD(N, x;)

Easy to see that the same attack still works
aslongasu; -v-w;, andu; -v' -w;, are
encoding of zeros for every j, j,
* Don't need the u; 's themselves to encode zero
°e.g.
iy (ai,l@’ aj2, a;3),
v ~ (b1, bigybs)and v’ ~ (by, b¥g)b3),
i (B £ c]-,

ces

A
1

A

S

Attack Con

—

Some Schemes are Broken

For example, schemes that publish low-level
encoding of zeros are likely broken

e Publishing zero-encoding would be useful

e E.g., to re-randomize encodings by adding a
subset-sum of these zero encodings

Even some obfuscation schemes

e E.g9., the “simple IO scheme” from [Zim14]
(this requires further extending the attacks)

IVI'any Assumptions are Broken

“Source Group” assumptions:

e Given level-1 encodings of elements o4, o, ...
cannot tell if expr(a) = 0

e expr(*) has degree < k — 3 (say)

Generally broken, use the attack with

e u; ~ expr(a) - o

*V ~aq,V ~ 0y

0wj~(xi

/ |

Many Assumptions are Broken

Subgroup-Membership assumptions:
e Input: encoding of (a, $, ..., $,0, ..., 0)

« And some other encodings too
e Goal: distinguish o« = 0 from o = §$
e Would be easy if we could get an encoding of

(x0...0.0,. ¢)

e Assumption: it is hard otherwise
Broken if we can get encoding of the form

(00 09 ¢

Many Assumptions are Broken

Currently we have no candidate GES with
hard source-group or subgroup-membership
problems

/ |

A Suggested Fix

Instead of u; v w;, ~ 0, maybe we can use

6=u]-1vw] —u] vw O

e For encodings u;, v,w and @, ¥, w]
This was suggested as a fix to the attacks

e It Is always possible to convert u; v w;, ~0
to get the weaker condition [BWZl4]

e Similar fix mentioned in [GGHZ14]
But the attack can be extended to defeat it

/ ’
S

Further Extending the Attack

We mount the same attack, using vectors of
double the length

ztst(5) = (Zi ail,ibicjz,i 0 —) ailyiBieeri : Gi)/g
e Similar to before, but now we have 1/g factor
e g =CRT(g4,...-,9:) in CLT

Equality holds over the integers/rationals!
SoY=UxVxW-1/4 and the same for Y’
When setting Z = Y~ x Y’, the 1/, falls off

/

Limitations of the Attacks

Rely on partitioning y;. i, = u; -v-w;, ~0
» We can vary u; without affecting v, w;,

 Similarly can vary w;, without affecting v, u;,

Many applications do not give such nicely
partitioned encoding of zeros
e E.9., [GGHRSW13] use Barrington BPs

» You get encoding of zeros in the form u X [[; V; x w
» But changing any bit in the input affects many V;’s

e Some applications have explicit binding factors

Final Musings About Security

Current Graded Encoding Schemes “hide”
encoded values behind mod-q relations

e Solving mod-q relations directly involves solving
lattice problems (since we need small solutions)

But zero-test parameter lets you “strip” the
mod-q part, get relations over the integers
e No more lattice problems, any solution will do

e Can only get these relations when you have an
encoding of zero

Final Musings About Security

Security relies on the adversary’s inability to
solve these relations

e By the time you get a zero, the relations are too
complicated to solve

Security feels more like HFE than FHE
e HFE: Hidden Field Equations
e FHE: Fully-Homomorphic Encryption

It's going to be a bumpy ride..

