The unique-SVP World

Shai Halevi, IBM, July 2009

1. Ajtai-Dwork’97/07, Regev’03
 - PKE from worst-case uSVP
2. Lyubashvsky-Micciancio’09
 - Relations between worst-case uSVP, BDD, GapSVP

Many slides stolen from Oded Regev, denoted by ®
f(n)-unique-SVP

- **Promise:** the shortest vector u is shorter by a factor of $f(n)$
- **Algorithm for 2^n-unique SVP** [LLL82, Schnorr87]
- **Believed to be hard for any polynomial n^c**

1 n^c 2^n

believed hard easy

$1 \geq f(n)$
Ajtai-Dwork & Regev’03 PKEs

- **Worst-case Search** u-SVP
 - Regev03: “Hensel lifting”
 - AD97: Geometric

- **Worst-case Decision** u-SVP

- **“Worst-case Distinguisher”** Wavy-vs-Uniform
 - Basic Intuition
 - Leftover hash lemma

- **AD97 PKE** bit-by-bit n-dimensional
 - Projecting to a line
 - Amortizing by adding dimensions

- **Regev03 PKE** bit-by-bit 1-dimensional

- **AD07 PKE** O(n)-bits n-dimensional

Nearly-trivial worst-case/average-case reductions
n-dimensional distributions

- Distinguish between the distributions:

- Wavy
 (In a random direction)

- Uniform
Given a lattice L, the dual lattice is

$$L^* = \{ x \mid \text{for all } y \in L, \langle x, y \rangle \in \mathbb{Z} \}$$
<table>
<thead>
<tr>
<th>Case 1</th>
<th></th>
<th>Case 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

L* - the dual of L

- Case 1: Diagram showing a sequence of points with a circle and a direction marked by a line with a length of $\frac{1}{n}$.
- Case 2: Diagram showing a more complex arrangement of points with a circle and a line with a length of $\frac{1}{\sqrt{n}}$. The diagram also includes a larger, more dense arrangement of points.
Reduction

- **Input:** a basis B^* for L^*
- **Produce a distribution that is:**
 - Wavy if L has unique shortest vector ($|u| \leq 1/n$)
 - Uniform (on $P(B^*)$) if $\lambda_1(L) > \sqrt{n}$
- **Choose a point from a Gaussian of radius \sqrt{n}, and reduce mod $P(B^*)$**
 - Conceptually, a “random L^* point” with a $\text{Gaussian}(\sqrt{n})$ perturbation
<table>
<thead>
<tr>
<th>Case 2</th>
<th>Case 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Creating the Distribution

L^*

L^* + perturb
Analyzing the Distribution

- Theorem: (using [Banaszczyk’93])
 The distribution obtained above depends only on the points in L of distance \sqrt{n} from the origin (up to an exponentially small error)

- Therefore,

 Case 1: Determined by multiples of u →
 wavy on hyperplanes orthogonal to u

 Case 2: Determined by the origin →
 uniform
Proof of Theorem

- For a set A in \mathbb{R}^n, define:
 \[\rho(A) = \sum_{x \in A} e^{-\pi \|x\|^2} \]

- Poisson Summation Formula implies:
 \[\forall y \in P(L^*), \quad \rho(y - L^*) = d(L) \cdot \sum_{x \in L} e^{2\pi i <x, y>} \rho(\{x\}) \]

- Banaszczyk’s theorem:
 For any lattice L,
 \[\rho(L - \sqrt{n}B_n) < 2^{-\Omega(n)} \rho(L \cap \sqrt{n}B_n) \]
Proof of Theorem (cont.)

In Case 2, the distribution obtained is very close to uniform:

\[\forall y \in P(L^*), \quad \rho(y - L^*) = d(L) \cdot \sum_{x \in L} e^{2\pi i \langle x, y \rangle} \rho(\{x\}) = \]

\[d(L) \cdot \left(1 + \sum_{x \in L \setminus \{0\}} e^{2\pi i \langle x, y \rangle} \rho(\{x\})\right) \approx d(L) \]

Because:

\[\left| \sum_{x \in L \setminus \{0\}} e^{2\pi i \langle x, y \rangle} \rho(\{x\}) \right| < \sum_{x \in L \setminus \{0\}} \rho(\{x\}) = \]

\[\rho(L \setminus \{0\}) = \rho(L - \sqrt{n}B_n) < 2^{-\Omega(n)} \rho(L \cap \sqrt{n}B_n) = 2^{-\Omega(n)} \]
Ajtai-Dwork & Regev’03 PKEs

- Worst-case Search u-SVP
- AD97: Geometric
- Regev03: “Hensel lifting”
- “Worst-case Distinguisher” Wavy-vs-Uniform
- Basic Intuition
- Worst-case Decision u-SVP
Distinguish \rightarrow Search, AD97

- Reminder: L^* lives in hyperplanes

- We want to identify u
 - Using an oracle that distinguishes wavy distributions from uniform in $P(B^*)$
The plan

1. Use the oracle to distinguish points close to H_0 from points close to $H_{\pm 1}$
2. Then grow very long vectors that are rather close to H_0
3. This gives a very good approximation for u, then we use it to find u exactly
Distinguishing H_0 from $H_{\pm 1}$

Input: basis B^* for L^*, \sim length of u, point x

- And access to wavy/uniform distinguisher

Decision: Is x $1/\text{poly}(n)$ close to H_0 or to $H_{\pm 1}$?

- Choose y from a wavy distribution near L^*
 - $y = \text{Gaussian}(\sigma)^*$ with $\sigma < 1/2|u|$
- Pick $\alpha \in \mathbb{R}[0,1]$, set $z = \alpha x + y \mod P(B^*)$
- Ask oracle if z is drawn from wavy or uniform distribution

* Gaussian(σ): variance σ^2 in each coordinate
Distinguishing H_0 from $H_{\pm 1}$ (cont.)

Case 1: x close to H_0

- αx also close to H_0
- $\alpha x + y \mod P(B^*)$ close to L^*, wavy
Distinguishing H_0 from $H_{\pm 1}$ (cont.)

Case 2: x close to $H_{\pm 1}$

- αx “in the middle” between H_0 and $H_{\pm 1}$
 - Nearly uniform component in the u direction
- $\alpha x + y \mod P(B^*)$ nearly uniform in $P(B^*)$
Distinguishing H_0 from $H_{\pm 1}$ (cont.)

- Repeat poly(n) times, take majority
 - Boost the advantage to near-certainty
- Below we assume a “perfect distinguisher”
 - Close to $H_0 \implies$ always says NO
 - Close to $H_{\pm 1} \implies$ always says YES
 - Otherwise, there are no guarantees
 - Except halting in polynomial time
Growing Large Vectors

- Start from some x_0 between H_{-1} and H_{+1}
 - e.g. a random vector of length $1/|u|$
- In each step, choose x_i s.t.
 - $|x_i| \sim 2|x_{i-1}|$
 - x_i is somewhere between H_{-1} and H_{+1}
- Keep going for $\text{poly}(n)$ steps
- Result is x^* between $H_{\pm 1}$ with $|x^*| = N/|u|$
 - Very large N, e.g., $N = 2^{n^2}$
From x_{i-1} to x_i

Try poly(n) many candidates:

- Candidate $w = 2x_{i-1} + \text{Gaussian}(1/|u|)$
- For $j = 1, \ldots, m = \text{poly}(n)$
 - $w_j = j/m \cdot w$
 - Check if w_j is near H_0 or near $H_{\pm 1}$
- If none of the w_j’s is near $H_{\pm 1}$ then accept w and set $x_i = w$
- Else try another candidate
From x_{i-1} to x_i: Analysis

- x_{i-1} between $H_{\pm 1} \rightarrow w$ is between $H_{\pm n}$
 - Except with exponentially small probability
- w is NOT between $H_{\pm 1} \rightarrow$ some w_j near $H_{\pm 1}$
 - So w will be rejected
- So if we make progress, we know that we are on the right track
From x_{i-1} to x_i: Analysis (cont.)

- With probability $1/\text{poly}(n)$, w is close to H_0
 - The component in the u direction is Gaussian with mean $< 2/|u|$ and variance $1/|u|^2$
From x_{i-1} to x_i: Analysis (cont.)

- With probability $1/\text{poly}$, w is close to H_0
 - The component in the u direction is Gaussian
 with mean $< 2/|u|$ and standard deviation $1/|u|$

- w is close to H_0, all w_j’s are close to H_0
 - So w will be accepted

- After polynomially many candidates, we will make progress whp
Finding u

- **Find $n-1$ x^*’s**
 - x^*_{t+1} is chosen orthogonal to x^*_1, \ldots, x^*_t
 - By choosing the Gaussians in that subspace

- **Compute $u' \perp \{x^*_1, \ldots, x^*_{n-1}\}$, with $|u'| = 1$**
 - u' is exponentially close to $u/|u|$
 - $u/|u| = (u' + e)$, $|e| = 1/N$
 - Can make $N \gg 2^n$ (e.g., $N = 2^{n^2}$)

- **Diophantine approximation to solve for u**
Ajtai-Dwork & Regev’03 PKEs

Worst-case Search u-SVP

Regev03: “Hensel lifting”

“Worst-case Distinguisher” Wavy-vs-Uniform

Worst-case/average-case + leftover hash lemma

AD97 PKE bit-by-bit n-dimensional

AD97: Geometric

Basic Intuition

(slide 47)
Average-case Distinguisher

- Intuition: lattice only matters via the direction of u
- Security parameter n, another parameter N
- A random u in n-dim. unit sphere defines $\mathcal{D}_u(N)$
 - $\chi = \text{disceret-Gaussian}(N)$ in one dimension
 - Defines a vector $x=\chi \cdot u <u,u>$, namely $x \parallel u$ and $<x,u>=\chi$
 - $y = \text{Gaussian}(N)$ in the other $n-1$ dimensions
 - $e = \text{Gaussian}(n^{-4})$ in all n dimensions
- Output $x+y+e$
Worst-case/average-case (cont.)

Thm: Distinguishing $\mathcal{D}_u(N)$ from Uniform

\rightarrow Distinguishing Wavy$_{B^*}$ from Uniform$_{B^*}$ for all B^*

- When you know $\lambda_1(L(B))$ upto $(1+1/poly(n))$-factor
- For parameter $N = 2^{\Omega(N)}$

Pf: Given B^*, scale it s.t. $\lambda_1(L(B)) \in [1,1+1/poly)$

- Also apply random rotation

- Given samples x (from Uniform$_{B^*}$ / Wavy$_{B^*}$)
 - Sample $y=$discrete-Gaussian$_{B^*}(N)$
 - Can do this for large enough N
 - Output $z=x+y$

- “Clearly” z is close to $\mathcal{G}(N) / \mathcal{D}_u(N)$ respectively
The AD97 Cryptosystem

- **Secret key:** a random \(u \in \) unit sphere

- **Public key:** \(n+m+1 \) vectors (\(m=8n \log n \))
 - \(b_1, \ldots, b_n \leftarrow \mathcal{D}_u(2^n), \quad v_0, v_1, \ldots, v_m \leftarrow \mathcal{D}_u(n2^n) \)
 - So \(\langle b_i, u \rangle, \langle v_i, u \rangle \) ~ integer
 - We insist on \(\langle v_0, u \rangle \) ~ odd integer

- **Will use** \(P(b_1, \ldots, b_n) \) for encryption
 - Need \(P(b_1, \ldots, b_n) \) with “width” > \(2^n/n \)
The AD97 Cryptosystem (cont.)

Encryption(\(\sigma\)):
- \(c' \leftarrow \text{random-subset-sum}(v_1,\ldots,v_m) + \sigma v_0/2\)
- output \(c = (c' + \text{Gaussian}(n^{-4})) \mod P(B)\)

Decryption(\(c\)):
- If \(<u,c>\) is closer than \(\frac{1}{4}\) to integer say 0,
 else say 1

Correctness due to \(<b_i,u>,<v_j,u>\sim\text{integer}\)
 - and width of \(P(B)\)
AD97 Security

- The b_i’s, v_i’s chosen from \mathcal{D}_u(something)
- By hardness assumption, can’t distinguish from \mathcal{G}_u(something)
- Claim: if they were from \mathcal{G}_u(something), c would have no information on the bit σ
 - Proven by leftover hash lemma + smoothing
- Note: v_i’s has variance n^2 larger than b_i’s
 - In the \mathcal{G}_u case $v_i \mod P(B)$ is nearly uniform
Partition \(P(B) \) to \(q^n \) cells, \(q \sim n^7 \)

For each point \(v_i \), consider the cell where it lies
- \(r_i \) is the corner of that cell

\[\sum_S v_i \mod P(B) = \sum_S r_i \mod P(B) + n^{-5} \text{ “error”} \]
- \(S \) is our random subset

\[\sum_S r_i \mod P(B) \] is a nearly-random cell
- We’ll show this using leftover hash

The Gaussian \((n^{-4}) \) in \(c \) drowns the error term
Leftover Hashing

- Consider hash function $H_R : \{0,1\}^m \rightarrow [q]^n$
 - The key is $R=[r_1,\ldots,r_m] \in [q]^{n \times m}$
 - The input is a bit vector $b=[\sigma_1,\ldots,\sigma_m]^T \in \{0,1\}^m$
- $H_R(b) = Rb \mod q$
- H is “pairwise independent” (well, almost..)
 - Yay, let’s use the leftover hash lemma
- $\langle R,H_R(b) \rangle$, $\langle R,U \rangle$ statistically close
 - For random $R \in [q]^{n \times m}$, $b \in \{0,1\}^m$, $U \in [q]^n$
 - Assuming $m \gg n \log q$
AD97 Security (cont.)

- We proved $\sum_S r_i \mod P(B)$ is nearly-random
- Recall:
 - $c_0 = \sum_S r_i + \text{error}(n^{-5}) + \text{Gaussian}(n^{-4}) \mod P(B)$
- For any x and error e, $|e| \sim n^{-5}$, the distr. $x + e + \text{Gaussian}(n^{-5})$, $x + \text{Gaussian}(n^{-4})$ are statistically close
- So $c_0 \sim \sum_S r_i + \text{Gaussian}(n^{-3}) \mod P(B)$
 - Which is close to uniform in $P(B)$
 - Also $c_1 = c_0 + v_0/2 \mod P(B)$ close to uniform
Ajtai-Dwork & Regev’03 PKEs

- Worst-case Search u-SVP
 - AD97: Geometric
- Average-case Decision Wavy-vs-Uniform
 - Leftover hash lemma
- Worst-case Decision u-SVP
 - Basic Intuition
- Regev03: “Hensel lifting”
- AD97 PKE bit-by-bit n-dimensional
 - Amortizing by adding dimensions
- Regev03 PKE bit-by-bit 1-dimensional
 - Not today
- AD07 PKE O(n)-bits n-dimensional

(slides 60) Projecting to a line

Not today
u-SVP vs. BDD vs. GAP-SVP

Lyubashevsky-Micciancio, CRYPTO 2009

Good old-fashion worst-case reductions
- Mostly Cook reductions (one Karp reduction)
Reminder: uSVP and BDD

uSVP$_\gamma$: γ-unique shortest vector problem
- **Input:** a basis $B = (b_1, \ldots, b_n)$
- **Promise:** $\lambda_1(L(B)) < \gamma \lambda_2(L(B))$
- **Task:** find shortest nonzero vector in $L(B)$

BDD$_{1/\gamma}$: $1/\gamma$-bounded distance decoding
- **Input:** a basis $B = (b_1, \ldots, b_n)$, a point t
- **Promise:** $\text{dist}(t, L(B)) < \lambda_1(L(B)) / \gamma$
- **Task:** find closest vector to t in $L(B)$
BDD$_{1/\gamma}$ \leq uSVP$_{\gamma/2}$

- **Input:** a basis $B = (b_1, \ldots, b_n)$, a point t
 - Assume that we know $\mu = \text{dist}(t, L(B))$

- **Let $B' = \begin{pmatrix} b_1 & \ldots & b_n & t \\ 0 & 0 & \mu \end{pmatrix}$**
 - Let $v \in L(B)$ be the closest to t, $|t-v|=\mu$
 - Will show that the vector $[(t-v) \ \mu]^{T}$ is the $\gamma/2$-unique shortest vector in $L(B')$
 - So uSVP$_{\gamma/2}(B')$ will return it

- **The size of $v' = [(t-v) \ \mu]^{T}$ is $(\mu^2+\mu^2)^{1/2} = \sqrt{2}\times\mu$**

Can get by with a good approximation for μ
Every $w' \in L(B')$ looks like $w' = [\beta t - w \beta \mu]^T$

- For some integer β and some $w \in L(B)$
- Write $\beta t - w = (\beta v - w) - \beta (v - t)$
- $\beta v - w \in L(B)$, nonzero if w' isn’t a multiple of v'
- So $|\beta v - w| \geq \lambda_1$, also recall $|v - t| = \mu \leq \lambda_1 / \gamma$

$|\beta t - w| \geq |\beta v - w| - \beta |v - t| \geq \lambda_1 - \beta \mu$

$|w'|^2 \geq (\lambda_1 - \beta \mu)^2 + (\beta \mu)^2 \geq \inf_{\beta \in \mathbb{R}}[(\lambda_1 - \beta \mu)^2 + (\beta \mu)^2]$

$= (\lambda_1)^2 / 2 \geq (\gamma \mu)^2 / 2$

So for any $w' \in L(B')$, not a multiple of v', we have $|w'| \geq \mu \gamma / 2 = |v'| \times \gamma / 2$
\[
\text{uSVP}_\gamma \leq \text{BDD}_{1/\gamma}
\]

- **Input**: a basis \(B = (b_1, b_2, \ldots, b_n) \)
 - Let \(\rho \) be a prime, \(\rho \geq \gamma \)
- For \(i=1,2,\ldots,n, \ j=1,2,\ldots,p-1 \)
 - \(B_i = (b_1, b_2, \ldots, \rho \times b_i, \ldots, b_n) \), \(t_{ij} = j \times b_i \)
 - Let \(v_{ij} = \text{BDD}_{1/\gamma}(B_i, T_{ij}) \), \(w_{ij} = v_{ij} - t_{ij} \)
- **Output** the smallest nonzero \(w_{ij} \) in \(L(B) \)
Let u be shortest nonzero vector in $L(B)$
- \(u = \sum \xi_i b_i \), at least one ξ_i isn’t divisible by ρ
 (otherwise u/ρ would also be in $L(B)$)
- Let $j = -\xi_i \mod \rho$, $j \in \{1, 2, \ldots, \rho-1\}$

We will prove that for these i, j
- $\lambda_1(L(B_i)) > \gamma \lambda_1(L(B))$
- $\text{dist}(t_{ij}, L(B_i)) \leq \lambda_1(L(B))$
The smallest multiple of u in $L(B_i)$ is ρu

- $|\rho u| = \rho \lambda_1(L(B)) \geq \gamma \lambda_1(L(B))$
- Any other vector in $L(B_i) \subseteq L(B)$ is longer than $\gamma \lambda_1(L(B))$ (since $L(B)$ is γ-unique)

$\lambda_1(L(B_i)) \geq \gamma \lambda_1(L(B))$

$t_{ij} + u = jb_i + \sum \tilde{\xi}_m b_m = (j+\tilde{\xi}_i)b_i + \sum_{m \neq i} \tilde{\xi}_m b_m \in L(B_i)$

$\text{dist}(t_{ij}, L(B_i)) \leq \lambda_1(L(B_i))$

(B_i, t_{ij}) satisfies the promise of $\text{BDD}_{1/\gamma}$

$v_{ij} = \text{BDD}_{1/\gamma}(B_i, t_{ij})$ is closest to t_{ij} in $L(B_i)$
- $w_{ij} = v_{ij} - t_{ij} \in L(B)$, since $t_{ij} \in L(B)$ and $v_{ij} \in L(B_i) \subseteq L(B)$
- $|w_{ij}| = \lambda_1(L(B))$
Reminder: GapSVP

- **GapSVP$_\gamma$**: decision version of approx$_\gamma$-SVP
 - Input: Basis B, number δ
 - Promise: either $\lambda_1(L(B)) \leq \delta$ or $\lambda_1(L(B)) > \gamma \delta$
 - Task: decide which is the case

- The reduction uSVP$_\gamma \leq$ GapSVP$_\gamma$ is the same as Regev’s Decision-to-Search uSVP reduction
GapSVP $\gamma \sqrt{n \log n} \leq \text{BDD}_{1/\gamma}$

- **Inputs:** Basis $B=(b_1,\ldots,b_n)$, number δ
- **Repeat** poly(n) times
 - Choose a random s_i of length $\leq \delta \sqrt{n \log n}$
 - Set $t_i = s_i \mod B$, run $v_i = \text{BDD}_{1/\gamma}(B,t_i)$
- **Answer YES** if $\exists i$ s.t. $v \neq t_i - s_i$, else **NO**

Need will show:

- $\lambda_1(L(B)) > \gamma \delta \sqrt{n \log n} \Rightarrow v = t_i - s_i$ always
- $\lambda_1(L(B)) \leq \delta \Rightarrow v \neq t_i - s_i$ with probability $\sim 1/2$
Case 1: $\lambda_1(L(B)) > \sqrt[n]{n \log n} \cdot \delta$

- Recall: $|s_i| \leq \delta \sqrt[n]{n \log n}$, $t_i = s_i \mod B$
 - t_i is $\leq \delta \sqrt[n]{n \log n}$ away from $v_i = t_i - s_i \in L(B)$
 - (B, t_i) satisfies the promise of $BDD_{1/\gamma}$
 - $BDD_{1/\gamma}(B, t_i)$ will return some vector in $L(B)$

- Any other $L(B)$ point has distance from t_i at least $\lambda_1(L(B)) - \delta \sqrt[n]{n \log n} > (\gamma - 1) \delta \sqrt[n]{n \log n}$
 - v_i is only answer that $BDD_{1/\gamma}(B, t_i)$ can return
Case 2: $\lambda_1(L(B)) \leq \delta$

- Let u be shortest nonzero in $L(B)$, $|u| = \lambda_1$
- s_i is random in $\text{Ball}(\delta \sqrt{n \log n})$
- With high probability $s_i \pm u$ also in ball
 - $t_i = s_i \mod B$ could just as well be chosen as $t_i = (s_i + u) \mod B$
 - Whatever $\text{BDD}_{1/\gamma}(B,t)$ returns it differs from $t_i - s_i$ w.p. $\geq 1/2$
Backup Slides

1. Regev’s Decision-to-Search uSVP
2. Regev’s dimension reduction
3. Diophantine Approximation
uSVP Decision \rightarrow Search

- Search-uSVP
- Decision mod-p problem
- Decision-uSVP
Reduction from: Decision mod-p

- Given a basis \((v_1 \ldots v_n)\) for \(n^{1.5}\)-unique lattice, and a prime \(p > n^{1.5}\)
- Assume the shortest vector is:
 \[u = a_1 v_1 + a_2 v_2 + \ldots + a_n v_n \]
- Decide whether \(a_1\) is divisible by \(p\)
Reduction to:
Decision uSVP

- Given a lattice, distinguish between:
 - Case 1. Shortest vector is of length $1/n$ and all non-parallel vectors are of length more than \sqrt{n}
 - Case 2. Shortest vector is of length more than \sqrt{n}
The reduction

- Input: a basis \((v_1, \ldots, v_n)\) of a \(n^{1.5}\) unique lattice
- Scale the lattice so that the shortest vector is of length \(1/n\)
- Replace \(v_1\) by \(pv_1\). Let \(M\) be the resulting lattice
- If \(p \mid a_1\) then \(M\) has shortest vector \(1/n\) and all non-parallel vectors more than \(\sqrt{n}\)
- If \(p \nmid a_1\) then \(M\) has shortest vector more than \(\sqrt{n}\)
The input lattice L
The lattice M

- The lattice M is spanned by pv_1, v_2, \ldots, v_n.
- If $p|a_1$, then $u = (a_1/p) \cdot pv_1 + a_2 v_2 + \ldots + a_n v_n \in M$.
The lattice M is spanned by pv_1, v_2, \ldots, v_n:

- If $p \nmid a_1$, then $u \notin M$:

\[\sqrt{n} \]
Reduction from:
Decision mod-p

- Given a basis \((v_1...v_n)\) for \(n^{1.5}\)-unique lattice, and a prime \(p>n^{1.5}\)
- Assume the shortest vector is:
 \[u = a_1v_1+a_2v_2+...+a_nv_n \]
- Decide whether \(a_1\) is divisible by \(p\)
The Reduction

- Idea: decrease the coefficients of the shortest vector

- If we find out that $p|a_1$ then we can replace the basis with $pv_1, v_2, ..., v_n$.

- u is still in the new lattice:

$$u = \frac{a_1}{p} \cdot pv_1 + a_2 v_2 + ... + a_n v_n$$

- The same can be done whenever $p|a_i$ for some i
The Reduction

- But what if $p \nmid a_i$ for all i?
- Consider the basis $v_1, v_2 - v_1, v_3, ..., v_n$
- The shortest vector is

$$u = (a_1 + a_2)v_1 + a_2(v_2 - v_1) + a_3v_3 + ... + a_nv_n$$
- The first coefficient is $a_1 + a_2$
- Similarly, we can set it to

$$a_1 - bp/2c a_2, ..., a_1 - a_2, a_1, a_1 + a_2, ..., a_1 + bp/2c a_2$$
- One of them is divisible by p, so we choose it and continue
The Reduction

- Repeating this process decreases the coefficients of u are by a factor of p at a time
 - The basis that we started from had coefficients $\leq 2^{2n}$
 - The coefficients are integers
- After $\leq 2n^2$ steps, all the coefficients but one must be zero
- The last vector standing must be $\pm u$
Regev’s dimension reduction
Reducing from n to 1-dimension

- Distinguish between the 1-dimensional distributions:

 Uniform:

 Wavy:
Reducing from n to 1-dimension

- First attempt: sample and project to a line
Reducing from n to 1-dimension

- But then we lose the wavy structure!
- We should project only from points very close to the line
The solution

- Use the periodicity of the distribution
- Project on a ‘dense line’:
The solution
The solution

- We choose the line that connects the origin to $e_1 + Ke_2 + K^2 e_3 + ... + K^{n-1} e_n$ where K is large enough.

- The distance between hyperplanes is n.
- The sides are of length 2^n.
- Therefore, we choose $K = 2^{O(n)}$.
- Hence, $d < O(K^n) = 2^{O(n^2)}$.
Worst-case vs. Average-case

- So far: a problem that is hard in the worst-case: distinguish between uniform and d,γ-wavy distributions for all integers $d < 2^{(n^2)}$
- For cryptographic applications, we would like to have a problem that is hard on the average: distinguish between uniform and d,γ-wavy distributions for a non-negligible fraction of d in $[2^{(n^2)}, 2 \cdot 2^{(n^2)}]$
Compressing

- The following procedure transforms $d,γ$-wavy into $2d,γ$-wavy for all integer d:
 - Sample a from the distribution
 - Return either $a/2$ or $(a+R)/2$ with probability $\frac{1}{2}$

- In general, for any real $\alpha \geq 1$, we can compress $d,γ$-wavy into $\alpha d,γ$-wavy

- Notice that compressing preserves the uniform distribution

- We show a reduction from worst-case to average-case
Assume there exists a distinguisher between uniform and γ-wavy distribution for some non-negligible fraction of d in $[2^n, 2 \cdot 2^n)$]

- Given either a uniform or a d, γ-wavy distribution for some integer $d < 2^n$ repeat the following:
 - Choose α in $\{1, \ldots, 2 \cdot 2^n\}$ according to a certain distribution
 - Compress the distribution by α
 - Check the distinguisher’s acceptance probability

- If for some α the acceptance probability differs from that of uniform sequences, return ‘wavy’; otherwise, return ‘uniform’
Reduction

- Distribution is uniform:
 - After compression it is still uniform
 - Hence, the distinguisher’s acceptance probability equals that of uniform sequences for all α

- Distribution is d,y-wavy:
 - After compression it is in the good range with some probability
 - Hence, for some α, the distinguisher’s acceptance probability differs from that of uniform sequences
Diophantine Approximation
Solving for \(u \)
(from slide 24)

- **Recall:** We have \(B=(b_1,\ldots,b_n) \) and \(u' \)
 - Shortest vector \(u \in L(B) \) is \(u = \sum \mu_i b_i, \ |\mu_i| < 2^n \)
 - Because the basis \(B \) is LLL reduced
 - \(u' \) is very very close to \(u/|u| \)
 - \(u/|u| = (u' + e), \ |e| = 1/N, \ N \gg 2^n \) (e.g., \(N=2^{n^2} \))

- **Express** \(u' = \sum \xi_i b_i \) (\(\xi_i \)'s are reals)

- **Set** \(v_i = \xi_i/\xi_n \) for \(i=1,\ldots,n-1 \)
 - \(v_i \) very very close to \(\mu_i/\mu_n \) (\(v_i \cdot \mu_n = \mu_i + O(2^n/N) \))
Diophantine Approximation

- Look for $\mu_n < 2^n$ s.t. for all i, $\nu_i \cdot \mu_n$ is $2^n/N$ away from an integer (for $N = 2^{n^2}$)

- z is the unique shortest in $L(M)$ by a factor $\sim N/2^n$

- Use LLL to find it

- Compute the μ_i's and u
Why is \(z \) unique-shortest?

- Assume we have another short vector \(y \in L(M) \)
 - \(\mu_n \) not much larger than \(2^n \), also the other \(\mu_i \)'s

- Every small \(y \in L(M) \) corresponds to \(v \in L(B) \) such that \(v/|v| \) very very close to \(u' \)
 - So also \(v/|v| \) very very close to \(u/|u| \) (\(\sim 2^n/N \))
 - Smallish coefficient \(\Rightarrow v \) not too long (\(\sim 2^{2n} \))

\(\Rightarrow v \) very close to its projection on \(u \) (\(\sim 2^{3n}/N \))

\(\Rightarrow \exists \chi \) s.t. \((v-\chi u) \in L(B) \) is short
 - Of length \(\leq 2^{3n}/N + \lambda_1/2 < \lambda_1 \)

\(\Rightarrow v \) must be a multiple of \(u \)