The unique-SVP World Shai Halevi, IBM, July 2009

- Ajtai-Dwork'97/07, Regev'03
 PKE from worst-case uSVP
- 2. Lyubashvsky-Micciancio'09
 - Relations between worst-case uSVP, BDD, GapSVP

Many slides stolen from Oded Regev, denoted by ®

f(n)-unique-SVP

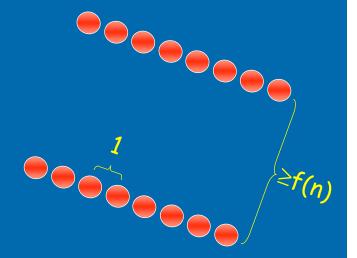
2n

easy

nc

believed hard

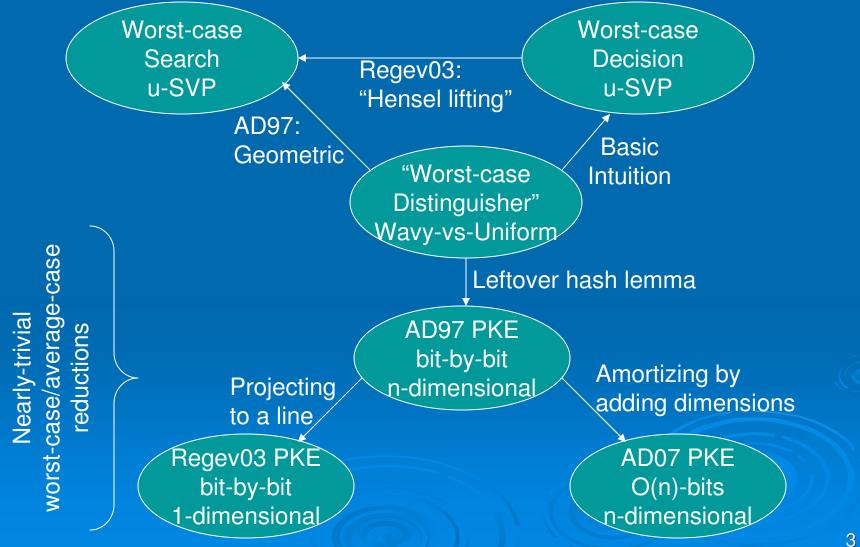
Promise: the shortest vector u is shorter by a factor of f(n)
 Algorithm for 2ⁿ-unique SVP [LLL82,Schnorr87]
 Believed to be hard for any polynomial n^c



 (\mathbf{R})

2

Ajtai-Dwork & Regev'03 PKEs



n-dimensional distributions > Distinguish between the distributions:

(In a random direction)

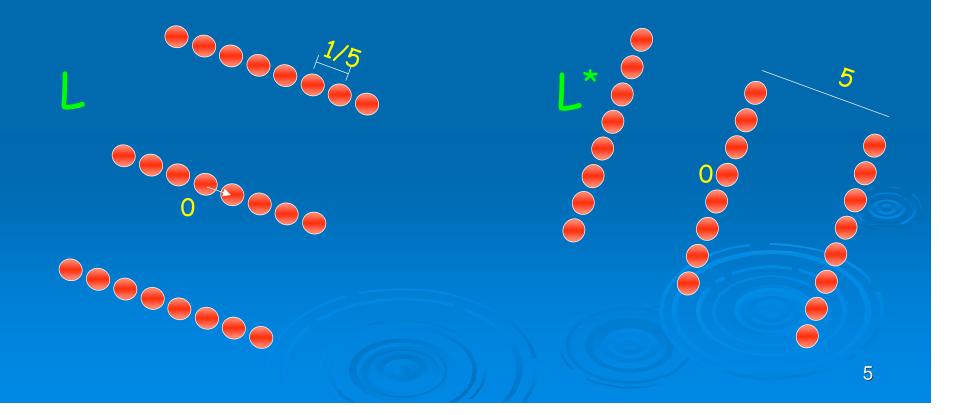
4

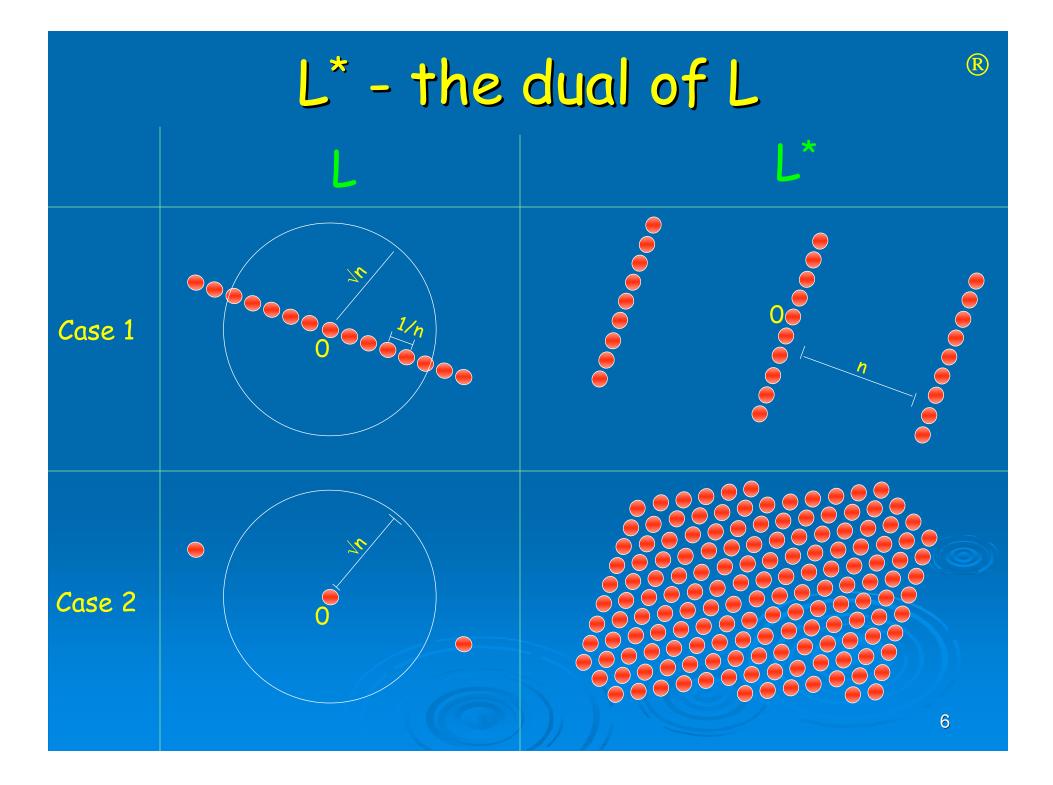
R

Dual Lattice

 (\mathbf{R})

> Given a lattice L, the dual lattice is $L^* = \{x \mid \text{for all } y \in L, \langle x, y \rangle \in Z \}$

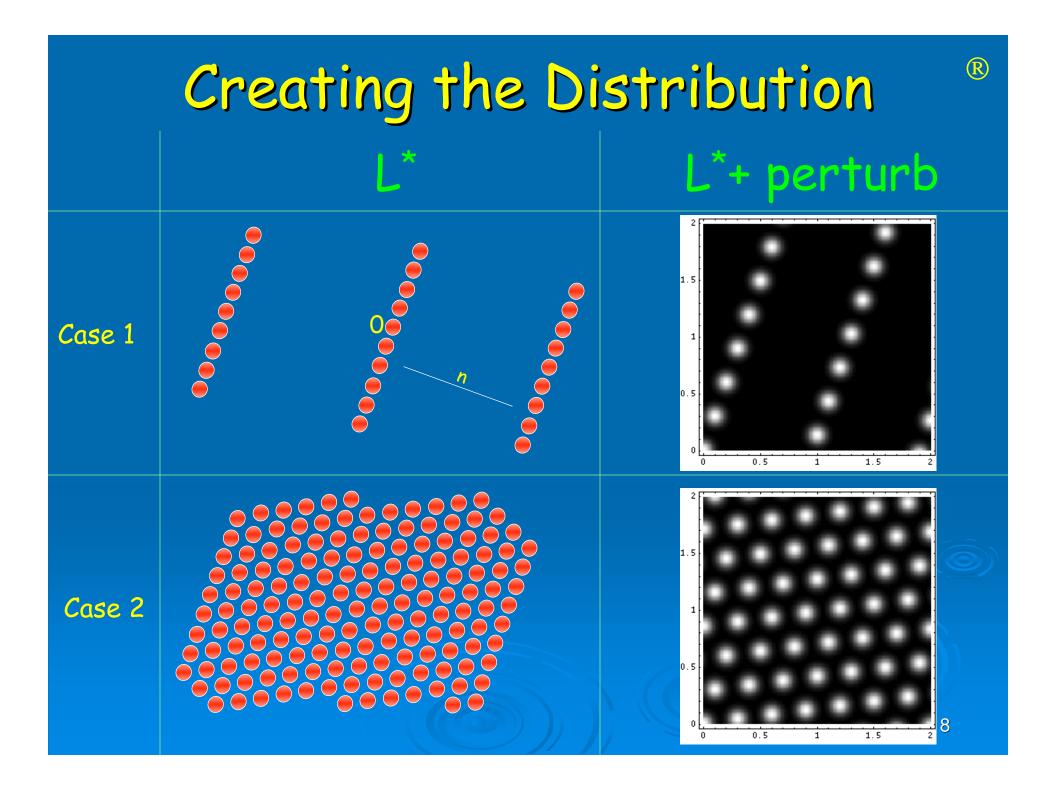




Reduction

> Input: a basis B* for L* > Produce a distribution that is: • Wavy if L has unique shortest vector $(|u| \le 1/n)$ • Uniform (on P(B*)) if $\lambda_1(L) > \sqrt{n}$ > Choose a point from a Gaussian of radius \sqrt{n} , and reduce mod $P(B^*)$ Conceptually, a "random L* point" with a

Gaussian(\sqrt{n}) perturbation



 Analyzing the Distribution [®]
 > Theorem: (using [Banaszczyk'93]) The distribution obtained above depends only on the points in L of distance √n from the origin (up to an exponentially small error)

➤ Therefore, Case 1: Determined by multiples of u → wavy on hyperplanes orthogonal to u Case 2: Determined by the origin → uniform

(\mathbf{R}) Proof of Theorem > For a set A in Rⁿ, define: $\rho(A) = \sum_{x \in A} e^{-\pi \|x\|^2}$ Poisson Summation Formula implies: $\forall y \in P(L^*), \ \rho(y - L^*) = d(L) \cdot \sum_{x \in I} e^{2\pi i \langle x, y \rangle} \rho(\{x\})$ > Banaszczyk's theorem: For any lattice L, $\rho(L - \sqrt{nB_n}) < 2^{-\Omega(n)} \rho(L \cap \sqrt{nB_n})$

10

Proof of Theorem (cont.)

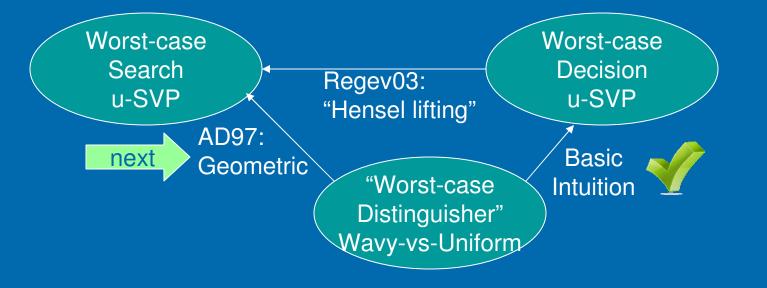
 (\mathbf{R})

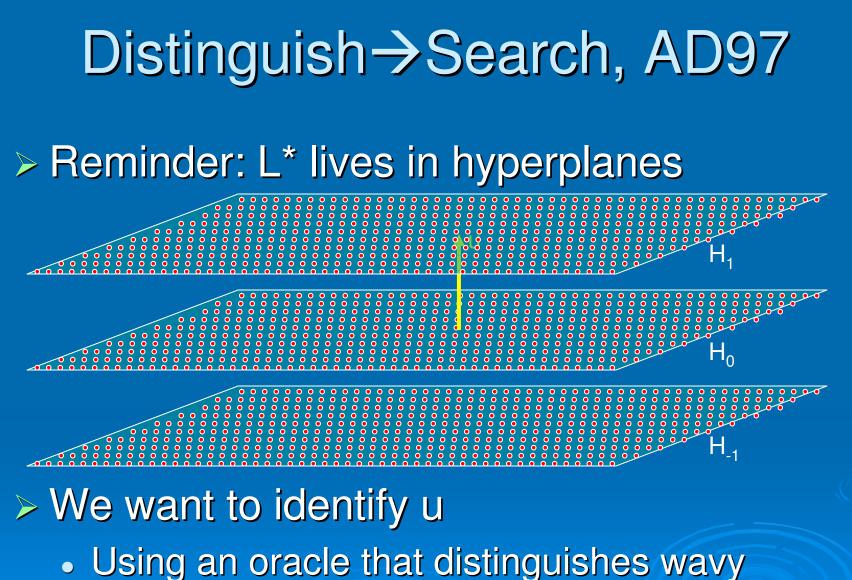
In Case 2, the distribution obtained is very close to uniform:

$$\forall y \in P(L^*), \ \rho(y - L^*) = d(L) \cdot \sum_{x \in L} e^{2\pi i \langle x, y \rangle} \rho(\{x\}) = d(L) \cdot \left(1 + \sum_{x \in L - \{0\}} e^{2\pi i \langle x, y \rangle} \rho(\{x\})\right) \approx d(L)$$

> Because: $\left|\sum_{x \in L - \{0\}} e^{2\pi i \langle x, y \rangle} \rho(\{x\})\right| < \sum_{x \in L - \{0\}} \rho(\{x\}) = \rho(L - \{0\}) = \rho(L - \{0\}) = \rho(L - \sqrt{n}B_n) < 2^{-\Omega(n)} \rho(L \cap \sqrt{n}B_n) = 2^{-\Omega(n)}$ 11

Ajtai-Dwork & Regev'03 PKEs





distributions from uniform in P(B*)

The plan

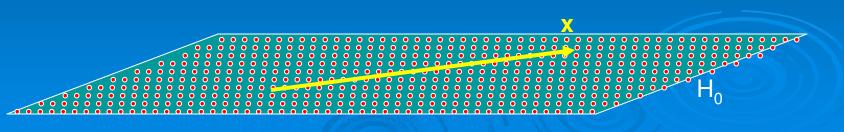
- 1. Use the oracle to distinguish points close to H_0 from points close to $H_{\pm 1}$
- 2. Then grow very long vectors that are rather close to H_0
- 3. This gives a very good approximation for u, then we use it to find u exactly

Distinguishing H₀ from H₊₁ Input: basis B* for L*, ~length of u, point x And access to wavy/uniform distinguisher Decision: Is x 1/poly(n) close to H_0 or to H_{+1} ? Choose y from a wavy distribution near L* • $y = Gaussian(\sigma)^*$ with $\sigma < 1/2|u|$ > Pick $\alpha \in \mathbb{R}[0,1]$, set $z = \alpha x + y \mod P(B^*)$ > Ask oracle if z is drawn from wavy or uniform distribution

* Gaussian(σ): variance σ^2 in each coordinate

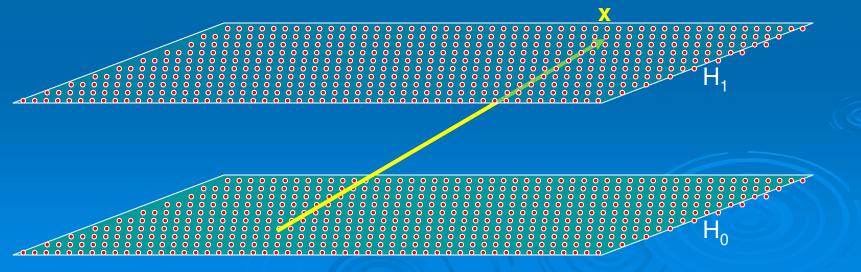
Distinguishing H_0 from $H_{\pm 1}$ (cont.)

Case 1: x close to H_0 > αx also close to H_0 > $\alpha x + y \mod P(B^*)$ close to L*, wavy



Distinguishing H_0 from $H_{\pm 1}$ (cont.)

Case 2: x close to H_{±1}
 αx "in the middle" between H₀ and H_{±1}
Nearly uniform component in the u direction
 αx + y mod P(B*) nearly uniform in P(B*)



Distinguishing H_0 from $H_{\pm 1}$ (cont.)

> Repeat poly(n) times, take majority
 Boost the advantage to near-certainty
 > Below we assume a "perfect distinguisher"
 Close to H₀ → always says NO
 Close to H_{±1} → always says YES
 Otherwise, there are no guarantees
 > Except halting in polynomial time

Growing Large Vectors

> Start from some x_0 between H_{1} and H_{1} • e.g. a random vector of length 1/|u| > In each step, choose x_i s.t. we'll see how in a • $|X_i| \sim 2|X_{i-1}|$ minute • x_i is somewhere between H_{-1} and H_{+1}^{\prime} Keep going for poly(n) steps > Result is x^* between H_{+1} with $|x^*|=N/|u|$ Very large N, e.g., N=2^{n²}

From x_{i-1} to x_i

Try poly(n) many candidates: > Candidate w = $2x_{i-1}$ + Gaussian(1/|u|) > For j = 1, ..., m = poly(n)• $w_i = j/m \cdot w$ Check if w_i is near H₀ or near H₊₁ > If none of the w_i 's is near $H_{\pm 1}$ then accept w and set $x_i = W$ Else try another candidate

From x_{i-1} to x_i: Analysis

×_{i-1} between H_{±1} → w is between H_{±n}
Except with exponentially small probability
w is NOT between H_{±1} → some w_j near H_{±1}
So w will be rejected
So if we make progress, we know that we are on the right track

From x_{i-1} to x_i: Analysis (cont.)

With probability 1/poly(n), w is close to H₀ The component in the u direction is Gaussian with mean < 2/|u| and variance 1/|u|²

noise

From x_{i-1} to x_i: Analysis (cont.)

With probability 1/poly, w is close to H₀
 The component in the u direction is Gaussian with mean < 2/|u| and standard deviation 1/|u|
 w is close to H₀, all w_j's are close to H₀
 So w will be accepted
 After polynomially many candidates, we will make progress whp

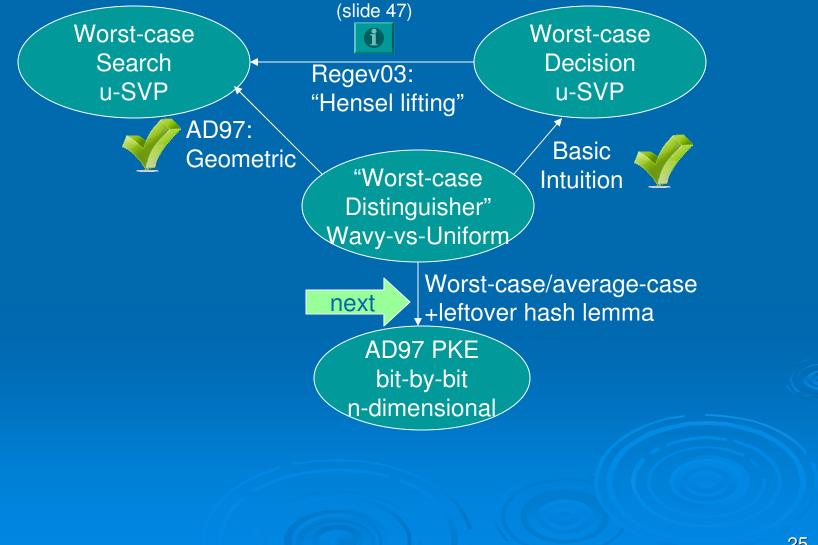
Finding u

> Find n-1 x*'s

- x_{t+1}^* is chosen orthogonal to x_1^*, \dots, x_t^*
- By choosing the Gaussians in that subspace
- > Compute $u' \perp \{x^*_1, ..., x^*_{n-1}\}$, with |u'|=1
 - u' is exponentially close to u/|u|
 - u/|u| = (u' + e), |e|=1/N
 - Can make $N \gg 2^n$ (e.g., $N=2^{n^2}$)

Diophantine approximation to solve for u (slide 71)

Ajtai-Dwork & Regev'03 PKEs



Average-case Distinguisher

- Intuition: lattice only matters via the direction of u
- Security parameter n, another parameter N
- > A random u in n-dim. unit sphere defines $\mathcal{D}_{u}(N)$
 - χ = disceret-Gaussian(N) in one dimension
 - Defines a vector x=χ·u/<u,u>, namely x||u and <x,u>=χ
 - y = Gaussian(N) in the other n-1 dimensions
 - e = Gaussian(n⁻⁴) in all n dimensions
 - Output x+y+e

Worst-case/average-case (cont.)

Thm: Distinguishing $\mathcal{D}_{u}(N)$ from Uniform

- \rightarrow Distinguishing Wavy_{B*} from Uniform_{B*} for all B*
 - When you know $\lambda_1(L(B))$ upto (1+1/poly(n))-factor
 - For parameter $N = 2^{\Omega(N)}$
- Pf: Given B*, scale it s.t. $\lambda_1(L(B)) \in [1,1+1/poly)$
- > Also apply random rotation
- Given samples x (from Uniform_{B*} / Wavy_{B*})
 - Sample y=discrete-Gaussian_{B*}(N)
 - Can do this for large enough N
 - Output z=x+y

> "Clearly" z is close to $\mathscr{G}(N) / \mathcal{D}_u(N)$ respectively

The AD97 Cryptosystem

Secret key: a random u ∈ unit sphere
Public key: n+m+1 vectors (m=8n log n)
b₁,...b_n ← D_u(2ⁿ), v₀,v₁,...,v_m ← D_u(n2ⁿ)
So <b_i,u>, <v_i,u> ~ integer
We insist on <v₀,u> ~ odd integer
Will use P(b₁,...b_n) for encryption
Need P(b₁,...b_n) with "width" > 2ⁿ/n

The AD97 Cryptosystem (cont.)

<u>Encryption(σ):</u>

> c' ← random-subset-sum(v₁,...v_m) + σv₀/2
> output c = (c' +Gaussian(n⁻⁴)) mod P(B)
<u>Decryption(c)</u>:
> If <u,c> is closer than ¼ to integer say 0, else say 1
Correctness due to <b_i,u>,<v_i,u>~integer

and width of P(B)

AD97 Security

> The b_i's, v_i's chosen from \mathcal{D}_{ii} (something) > By hardness assumption, can't distinguish from \mathcal{G}_{μ} (something) > Claim: if they were from \mathscr{G}_{μ} (something), c would have no information on the bit σ Proven by leftover hash lemma + smoothing > Note: v_i 's has variance n^2 larger than b_i 's \rightarrow In the \mathscr{G}_{II} case $v_i \mod P(B)$ is nearly uniform

AD97 Security (cont.)

> Partition P(B) to qⁿ cells, q~n⁷ \succ For each point v_i, consider the cell where it lies r_i is the corner of that cell Q $\succ \Sigma_{\rm S} v_{\rm i} \mod P({\rm B}) = \Sigma_{\rm S} r_{\rm i} \mod P({\rm B}) + n^{-5}$ "error" S is our random subset > $\Sigma_{s}r_{i}$ mod P(B) is a nearly-random cell We'll show this using leftover hash > The Gaussian(n⁻⁴) in c drowns the error term

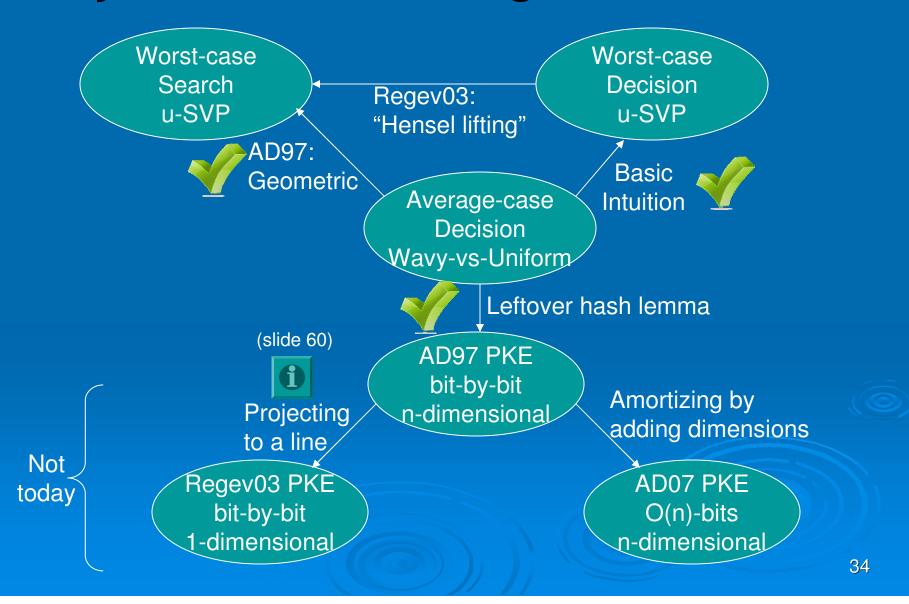
Leftover Hashing

> Consider hash function H_{R} :{0,1}^m \rightarrow [q]ⁿ • The key is $R=[r_1,\ldots,r_m] \in [q]^{n \times m}$ • The input is a bit vector $\mathbf{b} = [\sigma_1, \dots, \sigma_m]^T \in \{0, 1\}^m$ > H_R(b) = Rb mod q H is "pairwise independent" (well, almost..) Yay, let's use the leftover hash lemma $> < R, H_{R}(b) >, < R, \mathcal{U} > statistically close$ • For random $R \in [q]^{n \times m}$, $b \in \{0,1\}^m$, $\mathcal{U} \in [q]^n$ • Assuming $m \gg n \log q$

AD97 Security (cont.)

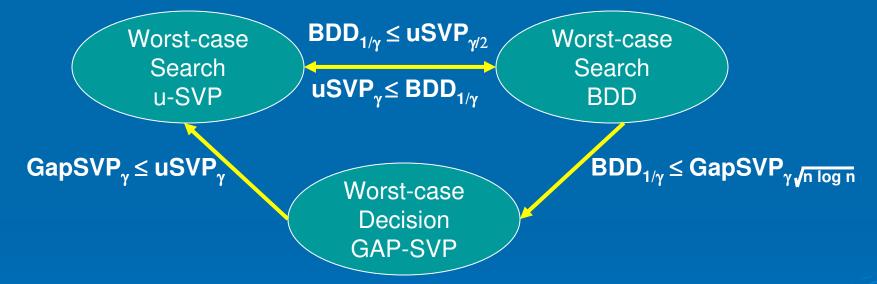
- We proved Σ_Sr_i mod P(B) is nearly-random
 Recall:
- c₀ = Σ_Sr_i + error(n⁻⁵) + Gaussian(n⁻⁴) mod P(B)
 For any x and error e, |e|~n⁻⁵, the distr. x+e+Gaussian(n⁻⁵), x+Gaussian(n⁻⁴) are statistically close
- > So $c_0 \sim \Sigma_S r_i + Gaussian(n^{-3}) \mod P(B)$
 - Which is close to uniform in P(B)
 - Also $c_1 = c_0 + v_0/2 \mod P(B)$ close to uniform

Ajtai-Dwork & Regev'03 PKEs



u-SVP vs. BDD vs. GAP-SVP

> Lyubashevsky-Micciancio, CRYPTO 2009



Good old-fashion worst-case reductions
 Mostly Cook reductions (one Karp reduction)

Reminder: uSVP and BDD

uSVP,: y-unique shortest vector problem > Input: a basis $B = (b_1, \dots, b_n)$ > Promise: $\lambda_1(L(B)) < \gamma \lambda_2(L(B))$ > Task: find shortest nonzero vector in L(B) **BDD**_{1/y}: 1/y-bounded distance decoding > Input: a basis $B = (b_1, \dots, b_n)$, a point t > Promise: dist(t, L(B)) < λ_1 (L(B)) / γ > Task: find closest vector to t in L(B)

$BDD_{1/\gamma} \le uSVP_{\gamma/2}$

> Input: a basis $B = (b_1, \dots, b_n)$, a point t • Assume that we know $\mu = dist(t, L(B))$ > Let B' = $\begin{bmatrix} b_1 \dots b_n \\ 0 \end{bmatrix}$ Can get by with a good approximation for μ • Let $v \in L(B)$ be the closest to t, $|t-v| = \mu$ • Will show that the vector $[(t-v) \mu]^T$ is the $\gamma/2$ -unique shortest vector in L(B') So uSVP_{v/2}(B') will return it > The size of v' = $[(t-v) \mu]^T$ is $(\mu^2 + \mu^2)^{1/2} = \sqrt{2 \times \mu}$

$|BDD_{1/\gamma} \le uSVP_{\gamma/2} (cont.)|$

> Every w' \in L(B') looks like w' =[β t-w $\beta\mu$]^T

- For some integer β and some w \in L(B)
- Write βt -w = (βv -w)- $\beta (v$ -t)
- βv-w∈ L(B), nonzero if w' isn't a multiple of v'
- So $|\beta v \cdot w| \ge \lambda_1$, also recall $|v \cdot t| = \mu (\le \lambda_1 / \gamma)$
- $\Rightarrow |\beta t w| \ge |\beta v w| \beta |v t| \ge \lambda_1 \beta \mu$
- $\Rightarrow |w'|^2 \ge (\lambda_1 \beta \mu)^2 + (\beta \mu)^2 \ge \inf_{\beta \in \mathbb{R}} [(\lambda_1 \beta \mu)^2 + (\beta \mu)^2]$ $= (\lambda_1)^2/2 \ge (\gamma \mu)^2/2$
- > So for any w' \in L(B'), not a multiple of v', we have $|w'| \ge \mu \gamma \sqrt{2} = |v'| \times \gamma / 2$

$uSVP_{\gamma} \leq BDD_{1/\gamma}$

> Input: a basis B = (b₁,b₂,...,b_n)
 . Let ρ be a prime, ρ≥γ
 > For i=1,2,...,n, j=1,2,...,p-1
 . B_i = (b₁,b₂,...,ρ×b_i,...,b_n), t_{ij} = j×b_i
 . Let v_{ij} = BDD_{1/γ}(B_i,T_{ij}), w_{ij} = v_{ij} - t_{ij}
 > Output the smallest nonzero w_{ij} in L(B)

$uSVP_{\gamma} \leq BDD_{1/\gamma}(cont.)$

Let u be shortest nonzero vector in L(B)
u = Σ ξ_ib_i, at least one ξ_i isn't divisible by ρ (otherwise u/ρ would also be in L(B))
Let j = -ξ_i mod ρ, j∈ {1,2,...,ρ-1}
We will prove that for these i,j
λ₁(L(B_i)) > γλ₁(L(B))
dist(t_{ij}, L(B_i)) ≤ λ₁(L(B))

> The smallest multiple of u in $L(B_i)$ is pu

- $|\rho u| = \rho \lambda_1(L(B)) \ge \gamma \lambda_1(L(B))$
- Any other vector in L(B_i)⊆L(B) is longer than γλ₁(L(B)) (since L(B) is γ-unique)

 $\rightarrow \lambda_1(L(B_i)) \geq \gamma \lambda_1(L(B))$

divisible by p

- $\succ t_{ij} + u = jb_i + \Sigma \xi_m b_m = (j + \xi_i)b_i + \Sigma_{m \neq i} \xi_m b_m \in L(B_i)$ $\rightarrow dist(t_{ij}, L(Bi)) \le \lambda_1(L(B_i))$
- \rightarrow (B_i,t_{ii}) satisfies the promise of BDD_{1/y}
- $\rightarrow v_{ij}=BDD_{1/\gamma}(B_i,t_{ij})$ is closest to t_{ij} in L(B_i)
 - $w_{ij} = v_{ij} t_{ij} \in L(B)$, since $t_{ij} \in L(B)$ and $v_{ij} \in L(B_i) \subseteq L(B)$
 - $|W_{ij}| = \lambda_1(L(B))$

Reminder: GapSVP

- GapSVP_γ: decision version of approx_γ-SVP
 Input: Basis B, number δ
 - Promise: either $\lambda_1(L(B)) \le \delta$ or $\lambda_1(L(B)) > \gamma \delta$
 - Task: decide which is the case

> The reduction $uSVP_{\gamma} \le GapSVP_{\gamma}$ is the same as Regev's Decision-to-Search uSVP reduction

$GapSVP_{\gamma n \log n} \leq BDD_{1/\gamma}$

- > Inputs: Basis B=(b₁,...,b_n), number δ
 > Repeat poly(n) times
 - Choose a random s_i of length $\leq \delta_i$ n log n
 - Set $t_i = s_i \mod B$, run $v_i = BDD_{1/\gamma}(B, t_i)$

> Answer YES if $\exists i \text{ s.t. } v \neq t_i - s_i$, else NO Need will show:

> $\lambda_1(L(B)) > \gamma \delta n \log n \rightarrow v = t_i - s_i always$ > $\lambda_1(L(B)) \le \delta \rightarrow v \ne t_i - s_i$ with probability ~1/2

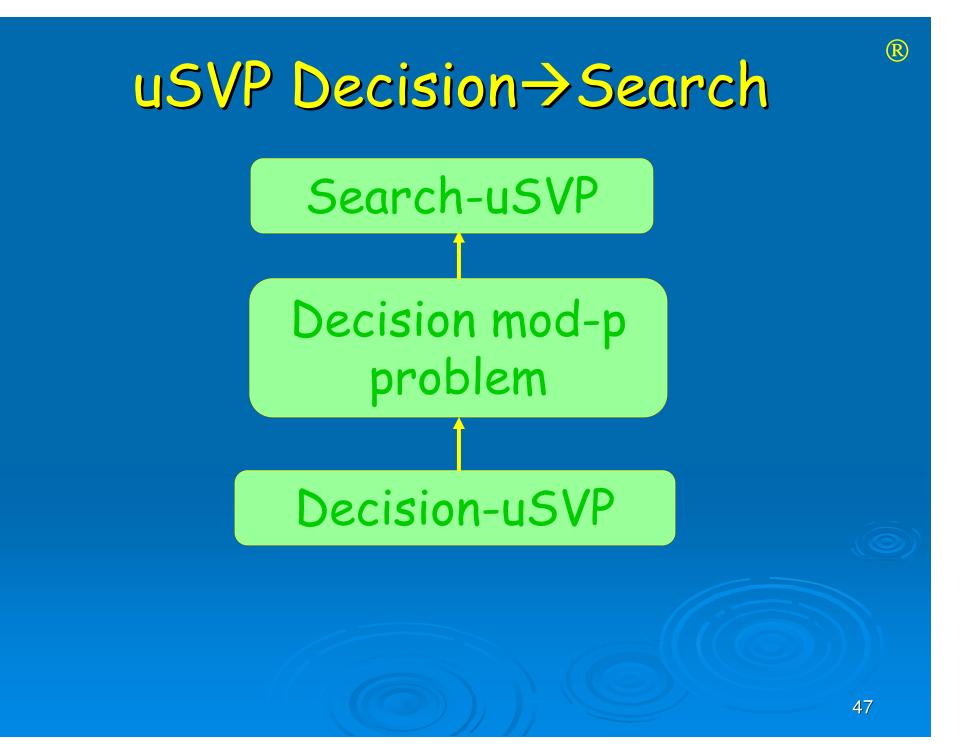
Case 1: $\lambda_1(L(B)) > \gamma \ln \log n \cdot \delta$ > Recall: $|s_i| \leq \delta \sqrt{n \log n}$, $t_i = s_i \mod B$ \rightarrow t_i is $\leq \delta \sqrt{n \log n}$ away from v_i = t_i-s_i $\in L(B)$ \rightarrow (B,t_i) satisfies the promise of BDD_{1/y} \rightarrow BDD_{1/y}(B,t_i) will return some vector in L(B) > Any other L(B) point has distance from t_i at least $\lambda_1(L(B))-\delta \ln \log n > (\gamma-1)\delta \ln \log n$ \rightarrow v_i is only answer that BDD_{1/v}(B,t_i) can return

Case 2: $\lambda_1(L(B)) \leq \delta$

Let u be shortest nonzero in L(B), |u|=λ₁
 s_i is random in Ball(δ√n log n)
 With high probability s_i±u also in ball
 t_i=s_i mod B could just as well be chosen as t_i=(s_i+u) mod B
 Whatever BDD_{1/γ}(B,t) returns it differs from t_i-s_i w.p. ≥ 1/2

Backup Slides

- 1. Regev's Decision-to-Search uSVP
- 2. Regev's dimension reduction
- 3. Diophantine Approximation



Reduction from: Decision mod-p

 Given a basis (v₁...v_n) for n^{1.5}-unique lattice, and a prime p>n^{1.5}
 Assume the shortest vector is: u = a₁v₁+a₂v₂+...+a_nv_n

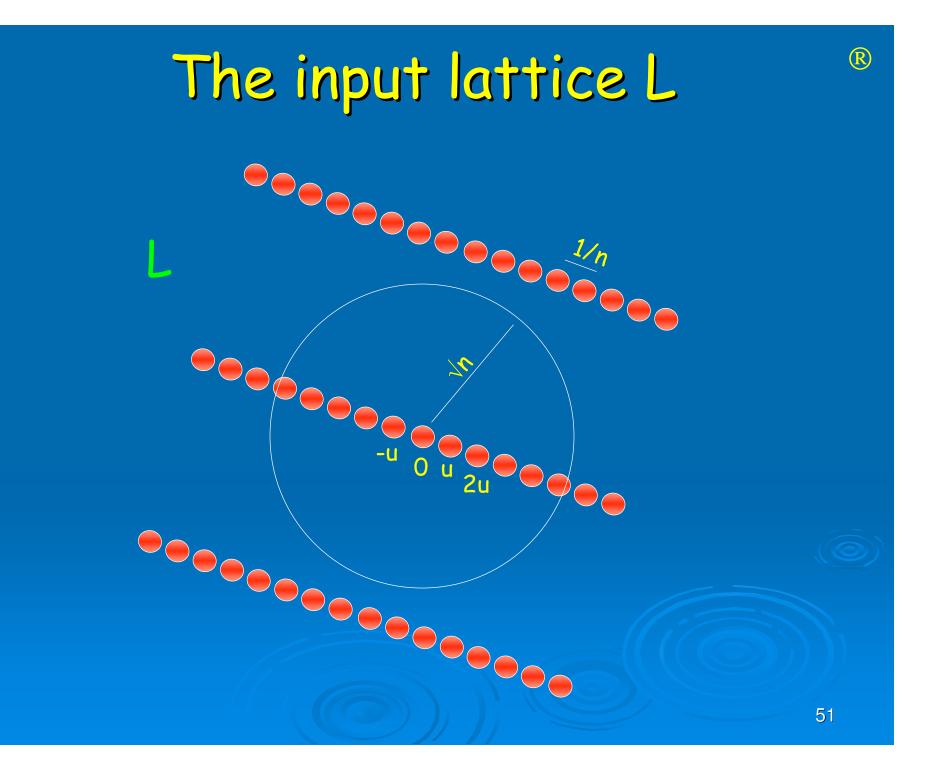
Decide whether a₁ is divisible by p

Reduction to: Decision uSVP

> Given a lattice, distinguish between: Case 1. Shortest vector is of length 1/n and all non-parallel vectors are of length more than √n Case 2. Shortest vector is of length more than √n

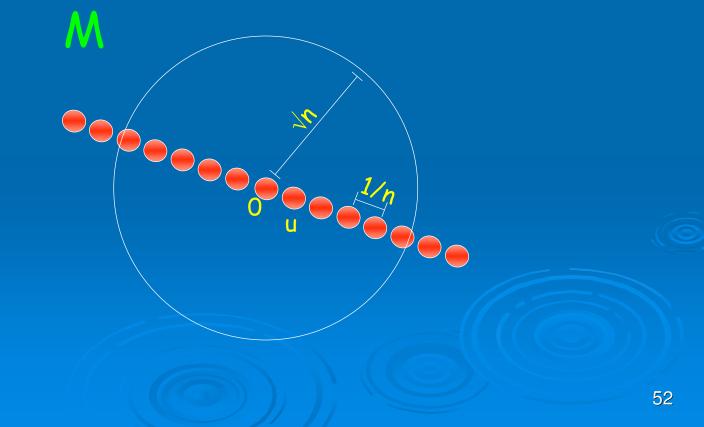
The reduction

> Input: a basis $(v_1, ..., v_n)$ of a $n^{1.5}$ unique lattice > Scale the lattice so that the shortest vector is of length 1/n > Replace v_1 by pv_1 . Let M be the resulting lattice > If $p \mid a_1$ then M has shortest vector 1/n and all non-parallel vectors more than \sqrt{n} > If $p \mid a_1$ then M has shortest vector more than \sqrt{n}



The lattice M

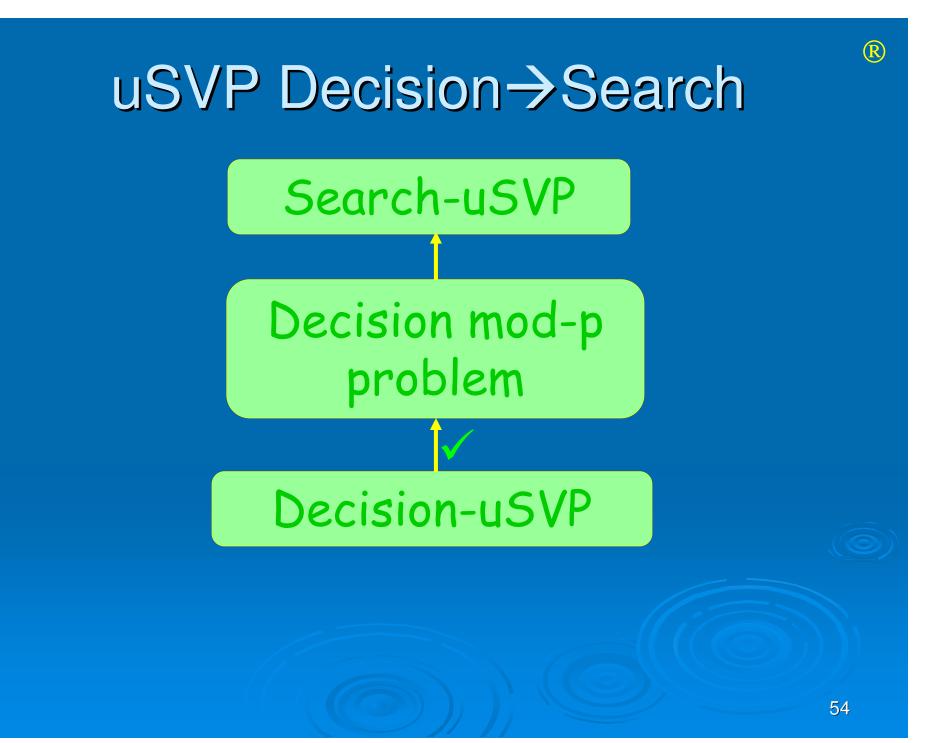
> The lattice M is spanned by pv₁,v₂,...,v_n:
> If p|a₁, then u = (a₁/p)·pv₁ + a₂v₂ +...+ a_nv_n ∈ M
:



The lattice M

R

The lattice M is spanned by pv₁,v₂,...,v_n: > If p\a₁, then u∉M:



Reduction from: Decision mod-p

 Given a basis (v₁...v_n) for n^{1.5}-unique lattice, and a prime p>n^{1.5}
 Assume the shortest vector is: u = a₁v₁+a₂v₂+...+a_nv_n

Decide whether a₁ is divisible by p

The Reduction

> Idea: decrease the coefficients of the shortest vector

If we find out that p|a₁ then we can replace the basis with pv₁,v₂,...,v_n.
 u is still in the new lattice:
 u = (a₁/p)·pv₁ + a₂v₂ + ... + a_nv_n

The same can be done whenever pla; for some i

The Reduction

 (\mathbf{R})

> But what if $p_i a_i$ for all i? > Consider the basis $v_1, v_2 - v_1, v_3, \dots, v_n$ > The shortest vector is $u = (a_1 + a_2)v_1 + a_2(v_2 - v_1) + a_3v_3 + ... + a_nv_n$ > The first coefficient is $a_1 + a_2$ > Similarly, we can set it to $a_1 - b_2 / 2 c_2 , ..., a_1 - a_2 , a_1 , a_1 + a_2 , ... , a_1 + b_2 / 2 c_2$ > One of them is divisible by p, so we choose it and continue

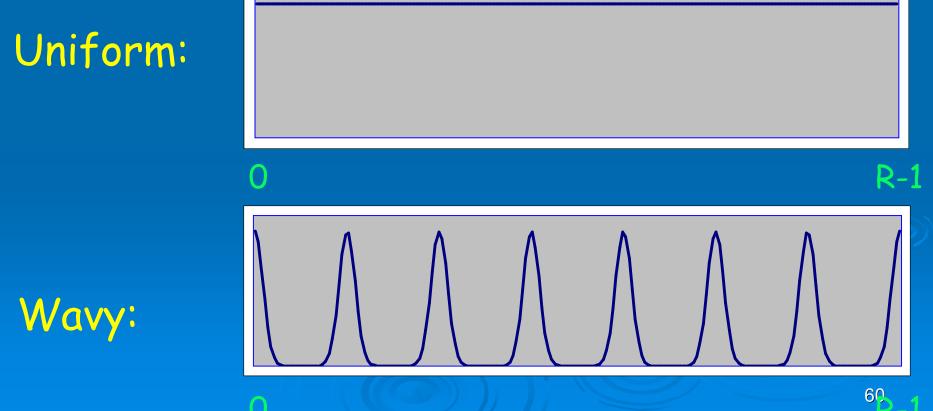
The Reduction

- Repeating this process decreases the coefficients of u are by a factor of p at a time
 - The basis that we started from had coefficients $\leq 2^{2n}$
 - The coefficients are integers
- After ≤ 2n² steps, all the coefficient but one must be zero

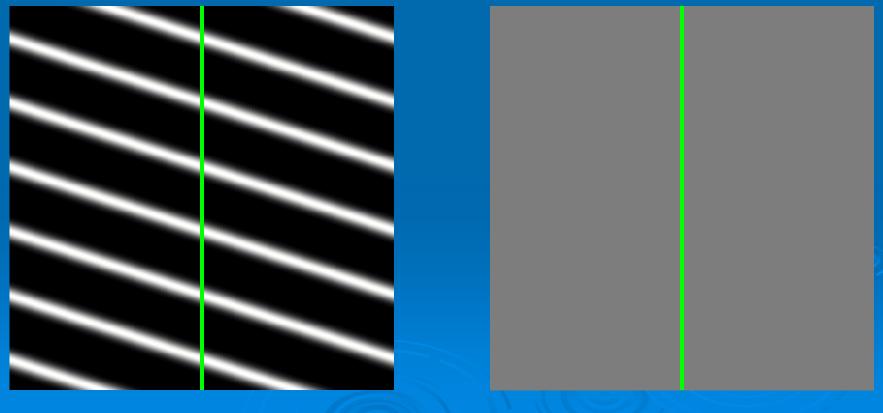
> The last vector standing must be $\pm u$

Regev's dimension reduction

Reducing from n to 1-dimension Distinguish between the 1-dimensional distributions: Uniform:

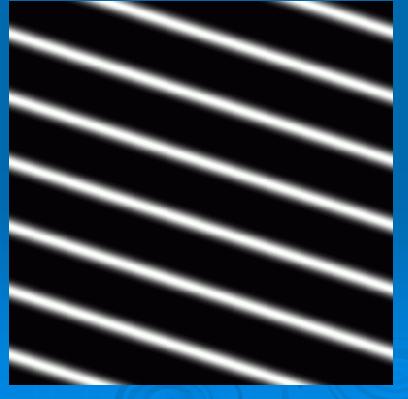


Reducing from n to 1-dimension > First attempt: sample and project to a line



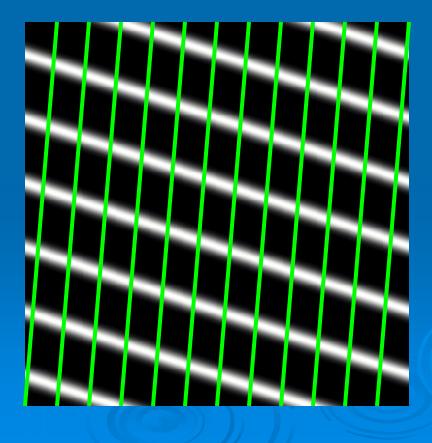
R

Reducing from n to 1-dimension
But then we lose the wavy structure!
We should project only from points very close to the line

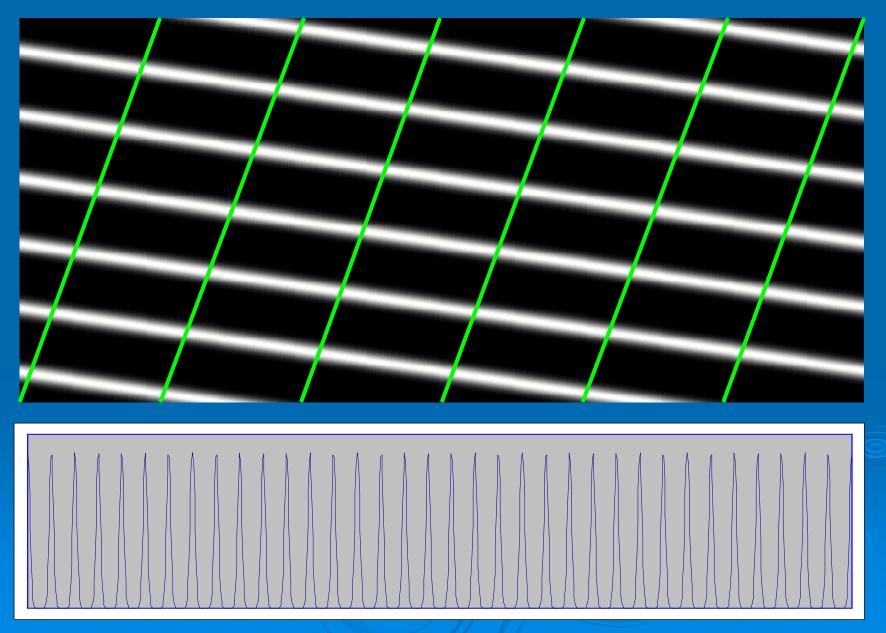


The solution

Use the periodicity of the distribution
 Project on a 'dense line' :



The solution



R

The solution

We choose the line that connects the origin to e₁+Ke₂+K²e₃...+Kⁿ⁻¹e_n where K is large enough

The distance between hyperplanes is n
 The sides are of length 2ⁿ
 Therefore, we choose K=2^{O(n)}
 Hence, d<O(Kⁿ)=2^{(O(n²))}

Worst-case vs. Average-case

> So far: a problem that is hard in the worstcase: distinguish between uniform and d,ywavy distributions for all integers $d(2^{n^2})$ > For cryptographic applications, we would like to have a problem that is hard on the average: distinguish between uniform and d, y-wavy distributions for a non-negligible fraction of d in [2^(n²), 2·2^(n²)]

Compressing

- The following procedure transforms d,y-wavy into 2d,y-wavy for all integer d:
 - Sample a from the distribution
 - Return either a/2 or (a+R)/2 with probability 늘
- > In general, for any real $\alpha \ge 1$, we can compress d,y-wavy into $\alpha d, y$ -wavy
- Notice that compressing preserves the uniform distribution

> We show a reduction from worst-case to average-case

Reduction

- Assume there exists a distinguisher between uniform and d,γ-wavy distribution for some nonnegligible fraction of d in [2^(n²), 2·2^(n²)]
- > Given either a uniform or a d,γ-wavy distribution for some integer d<2^(n²) repeat the following:
 - Choose α in {1,...,2×2^(n^2)} according to a certain distribution
 - Compress the distribution by $\boldsymbol{\alpha}$
 - Check the distinguisher's acceptance probability

 If for some α the acceptance probability differs from that of uniform sequences, return 'wavy'; otherwise, return 'uniform'

Reduction

 (\mathbf{R})

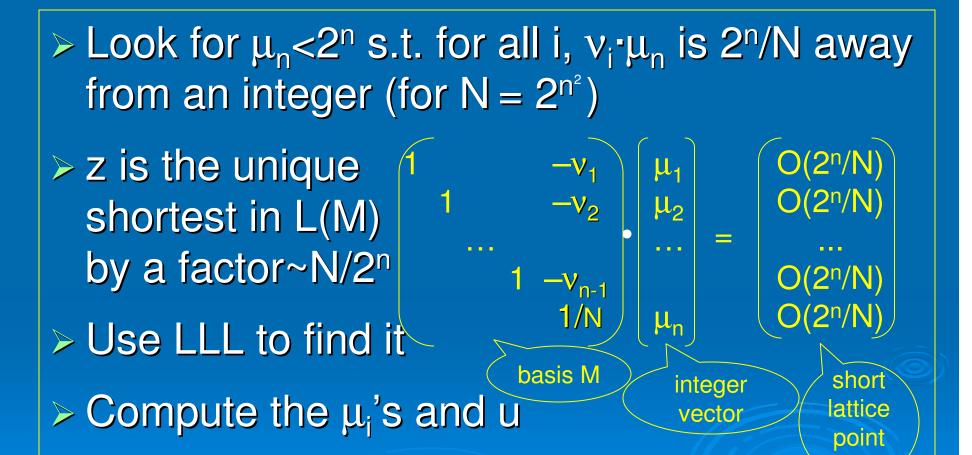
> Distribution is uniform: After compression it is still uniform - Hence, the distinguisher's acceptance probability equals that of uniform sequences for all $\boldsymbol{\alpha}$ > Distribution is d,y-wavy: After compression it is in the good range with some probability • Hence, for some α , the distinguisher's acceptance probability differs from that of uniform sequences $2^{(n^2)}$ $2 \times 2^{(n^2)}$ 69

Diophantine Approximation

Solving for u (from slide 24)

 \succ Recall: We have B=(b₁,...,b_n) and u' • Shortest vector $u \in L(B)$ is $u = \Sigma \mu_i b_i$, $|\mu_i| < 2^n$ Because the basis B is LLL reduced u' is very very close to u/u • $u/|u| = (u' + e), |e|=1/N, N \gg 2^{n} (e.g., N=2^{n^{2}})$ \succ Express u' = $\Sigma \xi_i b_i$ (ξ_i 's are reals) > Set $v_i = \xi_i/\xi_n$ for i=1,...,n-1 • v_i very very close to μ_i/μ_n ($v_i \cdot \mu_n = \mu_i + O(2^n/N)$)

Diophantine Approximation



Why is z unique-shortest? > Assume we have another short vector $y \in L(M)$ • μ_n not much larger than 2^n , also the other μ_i 's $\theta \sim 2^n/N$ > Every small $y \in L(M)$ corresponds to $v \in L(B)$ such that v/|v| very very close to u' • So also v/|v| very very close to u/|u| (~2ⁿ/N) ~22n • Smallish coefficient \rightarrow v not too long (~2²ⁿ) \rightarrow v very close to its projection on u (~2³ⁿ/N) $\rightarrow \exists \chi \text{ s.t. } (v - \chi u) \in L(B) \text{ is short}$ • Of length $\leq 2^{3n}/N + \lambda_1/2 < \lambda_1$ \rightarrow v must be a multiple of u ~2³ⁿ/N

73